Commit Graph

11039 Commits

Author SHA1 Message Date
Hans Wennborg
4744ac1733 Switch-to-lookup tables: set threshold to 3 cases
There has been an old FIXME to find the right cut-off for when it's worth
analyzing and potentially transforming a switch to a lookup table.

The switches always have two or more cases. I could not measure any speed-up
by transforming a switch with two cases. A switch with three cases gets a nice
speed-up, and I couldn't measure any compile-time regression, so I think this
is the right threshold.

In a Clang self-host, this causes 480 new switches to be transformed,
and reduces the final binary size with 8 KB.

llvm-svn: 199294
2014-01-15 05:00:27 +00:00
Arnold Schwaighofer
dc4c9460a2 LoopVectorize: Only strip casts from integer types when replacing symbolic
strides

Fixes PR18480.

llvm-svn: 199291
2014-01-15 03:35:46 +00:00
Matt Arsenault
2d353d1a10 Do pointer cast simplifications on addrspacecast
llvm-svn: 199254
2014-01-14 20:00:45 +00:00
Matt Arsenault
f08a44f903 Remove a check for an illegal condition.
Bitcasts can't be between address spaces anymore.

llvm-svn: 199253
2014-01-14 19:56:57 +00:00
Matt Arsenault
e55a2c2e6b Make nocapture analysis work with addrspacecast
llvm-svn: 199246
2014-01-14 19:11:52 +00:00
Duncan P. N. Exon Smith
93be7c4fb3 Reapply "LTO: add API to set strategy for -internalize"
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll.  The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")).  This commit
fixes the bug.

The original commit message follows.

Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.

This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker.  This puts the onus on the
linker to decide whether (and what) to internalize.

In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.

This patch enables three strategies:

- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
  visibility.

LTO_INTERNALIZE_FULL should be used when linking an executable.

Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized.  E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise.  However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.

lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().

<rdar://problem/14334895>

llvm-svn: 199244
2014-01-14 18:52:17 +00:00
Nico Rieck
7157bb765e Decouple dllexport/dllimport from linkage
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.

Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:

  define available_externally dllimport void @f() {}
  @Var = dllexport global i32 1, align 4

Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.

llvm-svn: 199218
2014-01-14 15:22:47 +00:00
Nico Rieck
9d2e0df049 Revert "Decouple dllexport/dllimport from linkage"
Revert this for now until I fix an issue in Clang with it.

This reverts commit r199204.

llvm-svn: 199207
2014-01-14 12:38:32 +00:00
Nico Rieck
e43aaf7967 Decouple dllexport/dllimport from linkage
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.

Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:

  define available_externally dllimport void @f() {}
  @Var = dllexport global i32 1, align 4

Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.

llvm-svn: 199204
2014-01-14 11:55:03 +00:00
NAKAMURA Takumi
23c0ab53b2 Revert r199191, "LTO: add API to set strategy for -internalize"
Please update also Other/link-opts.ll, in next time.

llvm-svn: 199197
2014-01-14 09:40:18 +00:00
Duncan P. N. Exon Smith
43ea3478bf LTO: add API to set strategy for -internalize
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.

This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker.  This puts the onus on the
linker to decide whether (and what) to internalize.

In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.

This patch enables three strategies:

- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
  visibility.

LTO_INTERNALIZE_FULL should be used when linking an executable.

Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized.  E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise.  However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.

lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().

<rdar://problem/14334895>

llvm-svn: 199191
2014-01-14 06:37:26 +00:00
Chandler Carruth
73523021d0 [PM] Split DominatorTree into a concrete analysis result object which
can be used by both the new pass manager and the old.

This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.

The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.

Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.

llvm-svn: 199104
2014-01-13 13:07:17 +00:00
Chandler Carruth
e509db410a [PM] Pull the generic graph algorithms and data structures for dominator
trees into the Support library.

These are all expressed in terms of the generic GraphTraits and CFG,
with no reliance on any concrete IR types. Putting them in support
clarifies that and makes the fact that the static analyzer in Clang uses
them much more sane. When moving the Dominators.h file into the IR
library I claimed that this was the right home for it but not something
I planned to work on. Oops.

So why am I doing this? It happens to be one step toward breaking the
requirement that IR verification can only be performed from inside of
a pass context, which completely blocks the implementation of
verification for the new pass manager infrastructure. Fixing it will
also allow removing the concept of the "preverify" step (WTF???) and
allow the verifier to cleanly flag functions which fail verification in
a way that precludes even computing dominance information. Currently,
that results in a fatal error even when you ask the verifier to not
fatally error. It's awesome like that.

The yak shaving will continue...

llvm-svn: 199095
2014-01-13 10:52:56 +00:00
Chandler Carruth
5ad5f15cff [cleanup] Move the Dominators.h and Verifier.h headers into the IR
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.

Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.

But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.

llvm-svn: 199082
2014-01-13 09:26:24 +00:00
Chandler Carruth
07baed53e8 Re-sort #include lines again, prior to moving headers around.
llvm-svn: 199080
2014-01-13 08:04:33 +00:00
Hans Wennborg
ac114a3ce7 Switch-to-lookup tables: Don't require a result for the default
case when the lookup table doesn't have any holes.

This means we can build a lookup table for switches like this:

  switch (x) {
    case 0: return 1;
    case 1: return 2;
    case 2: return 3;
    case 3: return 4;
    default: exit(1);
  }

The default case doesn't yield a constant result here, but that doesn't matter,
since a default result is only necessary for filling holes in the lookup table,
and this table doesn't have any holes.

This makes us transform 505 more switches in a clang bootstrap, and shaves 164 KB
off the resulting clang binary.

llvm-svn: 199025
2014-01-12 00:44:41 +00:00
Arnold Schwaighofer
66c742aeea LoopVectorizer: Enable strided memory accesses versioning per default
I saw no compile or execution time regressions on x86_64 -mavx -O3.

radar://13075509

llvm-svn: 199015
2014-01-11 20:40:34 +00:00
NAKAMURA Takumi
41c409ce0d LoopVectorize.cpp: Appease MSC16.
Excuse me, I hope msc16 builders would be fine till its end day.
Introduce nullptr then. ;)

llvm-svn: 199001
2014-01-11 09:59:27 +00:00
Diego Novillo
9518b63bfc Extend and simplify the sample profile input file.
1- Use the line_iterator class to read profile files.

2- Allow comments in profile file. Lines starting with '#'
   are completely ignored while reading the profile.

3- Add parsing support for discriminators and indirect call samples.

   Our external profiler can emit more profile information that we are
   currently not handling. This patch does not add new functionality to
   support this information, but it allows profile files to provide it.

   I will add actual support later on (for at least one of these
   features, I need support for DWARF discriminators in Clang).

   A sample line may contain the following additional information:

   Discriminator. This is used if the sampled program was compiled with
   DWARF discriminator support
   (http://wiki.dwarfstd.org/index.php?title=Path_Discriminators). This
   is currently only emitted by GCC and we just ignore it.

   Potential call targets and samples. If present, this line contains a
   call instruction. This models both direct and indirect calls. Each
   called target is listed together with the number of samples. For
   example,

                    130: 7  foo:3  bar:2  baz:7

   The above means that at relative line offset 130 there is a call
   instruction that calls one of foo(), bar() and baz(). With baz()
   being the relatively more frequent call target.

   Differential Revision: http://llvm-reviews.chandlerc.com/D2355

4- Simplify format of profile input file.

   This implements earlier suggestions to simplify the format of the
   sample profile file. The symbol table is not necessary and function
   profiles do not need to know the number of samples in advance.

   Differential Revision: http://llvm-reviews.chandlerc.com/D2419

llvm-svn: 198973
2014-01-10 23:23:51 +00:00
Diego Novillo
0accb3d2bc Propagation of profile samples through the CFG.
This adds a propagation heuristic to convert instruction samples
into branch weights. It implements a similar heuristic to the one
implemented by Dehao Chen on GCC.

The propagation proceeds in 3 phases:

1- Assignment of block weights. All the basic blocks in the function
   are initial assigned the same weight as their most frequently
   executed instruction.

2- Creation of equivalence classes. Since samples may be missing from
   blocks, we can fill in the gaps by setting the weights of all the
   blocks in the same equivalence class to the same weight. To compute
   the concept of equivalence, we use dominance and loop information.
   Two blocks B1 and B2 are in the same equivalence class if B1
   dominates B2, B2 post-dominates B1 and both are in the same loop.

3- Propagation of block weights into edges. This uses a simple
   propagation heuristic. The following rules are applied to every
   block B in the CFG:

   - If B has a single predecessor/successor, then the weight
     of that edge is the weight of the block.

   - If all the edges are known except one, and the weight of the
     block is already known, the weight of the unknown edge will
     be the weight of the block minus the sum of all the known
     edges. If the sum of all the known edges is larger than B's weight,
     we set the unknown edge weight to zero.

   - If there is a self-referential edge, and the weight of the block is
     known, the weight for that edge is set to the weight of the block
     minus the weight of the other incoming edges to that block (if
     known).

Since this propagation is not guaranteed to finalize for every CFG, we
only allow it to proceed for a limited number of iterations (controlled
by -sample-profile-max-propagate-iterations). It currently uses the same
GCC default of 100.

Before propagation starts, the pass builds (for each block) a list of
unique predecessors and successors. This is necessary to handle
identical edges in multiway branches. Since we visit all blocks and all
edges of the CFG, it is cleaner to build these lists once at the start
of the pass.

Finally, the patch fixes the computation of relative line locations.
The profiler emits lines relative to the function header. To discover
it, we traverse the compilation unit looking for the subprogram
corresponding to the function. The line number of that subprogram is the
line where the function begins. That becomes line zero for all the
relative locations.

llvm-svn: 198972
2014-01-10 23:23:46 +00:00
Arnold Schwaighofer
c2e9d759f2 LoopVectorizer: Handle strided memory accesses by versioning
for (i = 0; i < N; ++i)
   A[i * Stride1] += B[i * Stride2];

We take loops like this and check that the symbolic strides 'Strided1/2' are one
and drop to the scalar loop if they are not.

This is currently disabled by default and hidden behind the flag
'enable-mem-access-versioning'.

radar://13075509

llvm-svn: 198950
2014-01-10 18:20:32 +00:00
Chandler Carruth
d48cdbf0c3 Put the functionality for printing a value to a raw_ostream as an
operand into the Value interface just like the core print method is.
That gives a more conistent organization to the IR printing interfaces
-- they are all attached to the IR objects themselves. Also, update all
the users.

This removes the 'Writer.h' header which contained only a single function
declaration.

llvm-svn: 198836
2014-01-09 02:29:41 +00:00
Hao Liu
26abebbb2c Fix a bug about generating undef operand when optimising shuffle vector and insert element in instruction combine.
llvm-svn: 198730
2014-01-08 03:06:15 +00:00
Chandler Carruth
9aca918df9 Move the LLVM IR asm writer header files into the IR directory, as they
are part of the core IR library in order to support dumping and other
basic functionality.

Rename the 'Assembly' include directory to 'AsmParser' to match the
library name and the only functionality left their -- printing has been
in the core IR library for quite some time.

Update all of the #includes to match.

All of this started because I wanted to have the layering in good shape
before I started adding support for printing LLVM IR using the new pass
infrastructure, and commandline support for the new pass infrastructure.

llvm-svn: 198688
2014-01-07 12:34:26 +00:00
Chandler Carruth
8a8cd2bab9 Re-sort all of the includes with ./utils/sort_includes.py so that
subsequent changes are easier to review. About to fix some layering
issues, and wanted to separate out the necessary churn.

Also comment and sink the include of "Windows.h" in three .inc files to
match the usage in Memory.inc.

llvm-svn: 198685
2014-01-07 11:48:04 +00:00
Andrew Trick
e4a18605e0 Reapply r198654 "indvars: sink truncates outside the loop."
This doesn't seem to have actually broken anything. It was paranoia
on my part. Trying again now that bots are more stable.

This is a follow up of the r198338 commit that added truncates for
lcssa phi nodes. Sinking the truncates below the phis cleans up the
loop and simplifies subsequent analysis within the indvars pass.

llvm-svn: 198678
2014-01-07 06:59:12 +00:00
Andrew Trick
3c0ed08996 Revert "indvars: sink truncates outside the loop."
This reverts commit r198654.

One of the bots reported a SciMark failure.

llvm-svn: 198659
2014-01-07 01:50:58 +00:00
Andrew Trick
0b8e3b2cb4 indvars: sink truncates outside the loop.
This is a follow up of the r198338 commit that added truncates for
lcssa phi nodes. Sinking the truncates below the phis cleans up the
loop and simplifies subsequent analysis within the indvars pass.

llvm-svn: 198654
2014-01-07 01:02:55 +00:00
Andrew Trick
b70d9780ac 80 col. comment.
llvm-svn: 198653
2014-01-07 01:02:52 +00:00
Andrew Trick
6796ab424c Reapply r198478 "Fix PR18361: Invalidate LoopDispositions after LoopSimplify hoists things."
Now with a fix for PR18384: ValueHandleBase::ValueIsDeleted.

We need to invalidate SCEV's loop info when we delete a block, even if no values are hoisted.

llvm-svn: 198631
2014-01-06 19:43:14 +00:00
Alp Toker
f929e09b10 Add missed cleanup from r198456
All other uses of this macro in LLVM/clang have been moved to the function
definition so follow suite (and the usage advice) here too for consistency.

llvm-svn: 198516
2014-01-04 22:47:48 +00:00
Alp Toker
5e9f3265f8 Revert "Fix PR18361: Invalidate LoopDispositions after LoopSimplify hoists things."
This commit was the source of crasher PR18384:

While deleting: label %for.cond127
An asserting value handle still pointed to this value!
UNREACHABLE executed at llvm/lib/IR/Value.cpp:671!

Reverting to get the builders green, feel free to re-land after fixing up.
(Renato has a handy isolated repro if you need it.)

This reverts commit r198478.

llvm-svn: 198503
2014-01-04 17:00:45 +00:00
Andrew Trick
aceac9746d Fix PR18361: Invalidate LoopDispositions after LoopSimplify hoists things.
getSCEV for an ashr instruction creates an intermediate zext
expression when it truncates its operand.

The operand is initially inside the loop, so the narrow zext
expression has a non-loop-invariant loop disposition.

LoopSimplify then runs on an outer loop, hoists the ashr operand, and
properly invalidate the SCEVs that are mapped to value.

The SCEV expression for the ashr is now an AddRec with the hoisted
value as the now loop-invariant start value.

The LoopDisposition of this wide value was properly invalidated during
LoopSimplify.

However, if we later get the ashr SCEV again, we again try to create
the intermediate zext expression. We get the same SCEV that we did
earlier, and it is still cached because it was never mapped to a
Value. When we try to create a new AddRec we abort because we're using
the old non-loop-invariant LoopDisposition.

I don't have a solution for this other than to clear LoopDisposition
when LoopSimplify hoists things.

I think the long-term strategy should be to perform LoopSimplify on
all loops before computing SCEV and before running any loop opts on
individual loops. It's possible we may want to rerun LoopSimplify on
individual loops, but it should rarely do anything, so rarely require
invalidating SCEV.

llvm-svn: 198478
2014-01-04 05:52:49 +00:00
Nico Weber
7408c7066a Add a LLVM_DUMP_METHOD macro.
The motivation is to mark dump methods as used in debug builds so that they can
be called from lldb, but to not do so in release builds so that they can be
dead-stripped.

There's lots of potential follow-up work suggested in the thread
"Should dump methods be LLVM_ATTRIBUTE_USED only in debug builds?" on cfe-dev,
but everyone seems to agreen on this subset.

Macro name chosen by fair coin toss.

llvm-svn: 198456
2014-01-03 22:53:37 +00:00
David Peixotto
ea9ba446d5 Fix loop rerolling pass failure with non-consant loop lower bound
The loop rerolling pass was failing with an assertion failure from a
failed cast on loops like this:

  void foo(int *A, int *B, int m, int n) {
    for (int i = m; i < n; i+=4) {
      A[i+0] = B[i+0] * 4;
      A[i+1] = B[i+1] * 4;
      A[i+2] = B[i+2] * 4;
      A[i+3] = B[i+3] * 4;
    }
  }

The code was casting the SCEV-expanded code for the new
induction variable to a phi-node. When the loop had a non-constant
lower bound, the SCEV expander would end the code expansion with an
add insted of a phi node and the cast would fail.

It looks like the cast to a phi node was only needed to get the
induction variable value coming from the backedge to compute the end
of loop condition. This patch changes the loop reroller to compare
the induction variable to the number of times the backedge is taken
instead of the iteration count of the loop. In other words, we stop
the loop when the current value of the induction variable ==
IterationCount-1. Previously, the comparison was comparing the
induction variable value from the next iteration == IterationCount.

This problem only seems to occur on 32-bit targets. For some reason,
the loop is not rerolled on 64-bit targets.

PR18290

llvm-svn: 198425
2014-01-03 17:20:01 +00:00
Hal Finkel
decb024c86 Disable compare sinking in CodeGenPrepare when multiple condition registers are available
As noted in the comment above CodeGenPrepare::OptimizeInst, which aggressively
sinks compares to reduce pressure on the condition register(s), for targets
such as PowerPC with multiple condition registers, this may not be the right
thing to do. This adds an HasMultipleConditionRegisters boolean to TLI, and
CodeGenPrepare::OptimizeInst is skipped when HasMultipleConditionRegisters is
true.

This functionality will be used by the PowerPC backend in an upcoming commit.
Especially when the PowerPC backend starts tracking individual condition
register bits as separate allocatable entities (which will happen in this
upcoming commit), this sinking from CodeGenPrepare::OptimizeInst is
significantly suboptimial.

llvm-svn: 198354
2014-01-02 21:13:43 +00:00
Andrew Trick
b6bc783060 indvars: cleanup the IV visitor. It does more than gather sext/zext info.
llvm-svn: 198353
2014-01-02 21:12:11 +00:00
Matt Arsenault
461c8e0a8c Delete unread globals through addrspacecast
llvm-svn: 198346
2014-01-02 20:01:43 +00:00
Matt Arsenault
da1deabb16 Fix addrspacecast with metadata globals
llvm-svn: 198345
2014-01-02 19:53:49 +00:00
Andrew Trick
020dd898fc indvars: insert truncate at loop boundary to avoid redundant IVs.
When widening an IV to remove s/zext, we generally try to eliminate
the original narrow IV. However, LCSSA phi nodes outside the loop were
still using the original IV. Clean this up more aggressively to avoid
redundancy in generated code.

llvm-svn: 198338
2014-01-02 19:29:38 +00:00
Nico Weber
1226531099 Set LLVM_EXPORTED_SYMBOL_FILE in CMakeLists whose corresponding Makefiles do so.
(unittests/ExecutionEngine/JIT/CMakeLists.txt is still missing for now, since
it handles export files in a strange way: It generates a .exports file from a
.def file instead of the other way round.)

llvm-svn: 198183
2013-12-29 23:06:49 +00:00
Alexander Potapenko
4f0335f863 [ASan] Fix the test for __asan_gen_ globals and actually fix http://llvm.org/bugs/show_bug.cgi?id=17976
by setting the correct linkage (as stated in the bug).

llvm-svn: 198018
2013-12-25 16:46:27 +00:00
Alexander Potapenko
daf96ae81b [ASan] Make sure none of the __asan_gen_ global strings end up in the symbol table, add a test.
This should fix http://llvm.org/bugs/show_bug.cgi?id=17976
Another test checking for the global variables' locations and prefixes on Darwin will be committed separately.

llvm-svn: 198017
2013-12-25 14:22:15 +00:00
Andrew Trick
0ba77a0740 Add support to indvars for optimizing sadd.with.overflow.
Split sadd.with.overflow into add + sadd.with.overflow to allow
analysis and optimization. This should ideally be done after
InstCombine, which can perform code motion (eventually indvars should
run after all canonical instcombines). We want ISEL to recombine the
add and the check, at least on x86.

This is currently under an option for reducing live induction
variables: -liv-reduce. The next step is reducing liveness of IVs that
are live out of the overflow check paths. Once the related
optimizations are fully developed, reviewed and tested, I do expect
this to become default.

llvm-svn: 197926
2013-12-23 23:31:49 +00:00
Richard Sandiford
1fb5c13e3a Fix Scalarizer insertion point when replacing PHIs with insertelements
If the Scalarizer scalarized a vector PHI but could not scalarize
all uses of it, it would insert a series of insertelements to reconstruct
the vector PHI value from the scalar ones.  The problem was that it would
emit these insertelements immediately after the PHI, even if there were
other PHIs after it.

llvm-svn: 197909
2013-12-23 14:51:56 +00:00
Richard Sandiford
3548cbb980 Fix Scalarizer handling of vector GEPs with multiple index operands
The old code only worked for one index operand.  Also handle "inbounds".

llvm-svn: 197908
2013-12-23 14:45:00 +00:00
Kostya Serebryany
530e207d8a [asan] don't unpoison redzones on function exit in use-after-return mode.
Summary:
Before this change the instrumented code before Ret instructions looked like:
  <Unpoison Frame Redzones>
  if (Frame != OriginalFrame) // I.e. Frame is fake
     <Poison Complete Frame>

Now the instrumented code looks like:
  if (Frame != OriginalFrame) // I.e. Frame is fake
     <Poison Complete Frame>
  else
     <Unpoison Frame Redzones>

Reviewers: eugenis

Reviewed By: eugenis

CC: llvm-commits

Differential Revision: http://llvm-reviews.chandlerc.com/D2458

llvm-svn: 197907
2013-12-23 14:15:08 +00:00
Kostya Serebryany
ff7bde1582 [asan] produce fewer stores when poisoning stack shadow
llvm-svn: 197904
2013-12-23 09:24:36 +00:00
Justin Bogner
0ba3f211c4 Transforms: Don't create bad weights when eliminating dead cases
If we happen to eliminate every case in a switch that has branch
weights, we currently try to create metadata for the one remaining
branch, triggering an assert. Instead, we need to check that the
metadata we're trying to create is sensible.

llvm-svn: 197791
2013-12-20 08:21:30 +00:00
Kay Tiong Khoo
e37d52095e Stay classy (and legal) LLVM. Remove links to 3rd party SMT solver whose links may not be permanent.
llvm-svn: 197713
2013-12-19 18:35:54 +00:00