This defines the basic set of pointer authentication clang builtins
(provided in a new header, ptrauth.h), with diagnostics and IRGen
support. The availability of the builtins is gated on a new flag,
`-fptrauth-intrinsics`.
Note that this only includes the basic intrinsics, and notably excludes
`ptrauth_sign_constant`, `ptrauth_type_discriminator`, and
`ptrauth_string_discriminator`, which need extra logic to be fully
supported.
This also introduces clang/docs/PointerAuthentication.rst, which
describes the ptrauth model in general, in addition to these builtins.
Co-Authored-By: Akira Hatanaka <ahatanaka@apple.com>
Co-Authored-By: John McCall <rjmccall@apple.com>
It's useful to provide an indicator code with the trap, which the generic
__builtin_trap can't do. asm("brk #N") is an option, but following that with a
__builtin_unreachable() leads to two traps when the compiler doesn't know the
block can't return. So compiler support like this is useful.
Our implementation previously accepted signed arguments and performed
integer promotion on the argument. GCC's implementation requires an
unsigned argument and does not perform integer promotion on it.
Summary:
The PTX target supports the f16 type natively and we alreaqdy have a few
LLVM backend tests that support the LLVM-IR. We should be able to enable
this for generic use. This is done prior the f16 math functions being
written in the GPU libc case.
This patch implements `__is_layout_compatible` intrinsic, which supports
`std::is_layout_compatible` type trait introduced in C++20
([P0466R5](https://wg21.link/p0466r5) "Layout-compatibility and
Pointer-interconvertibility Traits"). Name matches GCC and MSVC
intrinsic.
Basically, this patch exposes our existing machinery for checking for
layout compatibility and figuring out common initial sequences. Said
machinery is a bit outdated, as it doesn't implement
[CWG1719](https://cplusplus.github.io/CWG/issues/1719.html) "Layout
compatibility and cv-qualification revisited" and
[CWG2759](https://cplusplus.github.io/CWG/issues/2759.html)
"`[[no_unique_address]` and common initial sequence". Those defect
reports are considered out of scope of of this PR, but will be
implemented in subsequent PRs.
Partially addresses #48204
Which is causing CI checks to fail.
clang/docs/LanguageExtensions.rst:2794:takes no arguments and produces an unsigned long long result. The builtin does
clang/docs/LanguageExtensions.rst:2795:not guarantee any particular frequency, only that it is stable. Knowledge of the
+ echo '*** Trailing whitespace has been found in Clang source files as described above ***'
Summary:
This patch adds a new intrinsic and builtin function mirroring the
existing `__builtin_readcyclecounter`. The difference is that this
implementation targets a separate counter that some targets have which
returns a fixed frequency clock that can be used to determine elapsed
time, this is different compared to the cycle counter which often has
variable frequency.
This patch only adds support for the NVPTX and AMDGPU targets.
This is done as a new and separate builtin rather than an argument to
`readcyclecounter` to avoid needing to change existing code and to make
the separation more explicit.
Summary:
The standard GNU atomic operations are a very common way to target
hardware atomics on the device. With more heterogenous devices being
introduced, the concept of memory scopes has been in the LLVM language
for awhile via the `syncscope` modifier. For targets, such as the GPU,
this can change code generation depending on whether or not we only need
to be consistent with the memory ordering with the entire system, the
single GPU device, or lower.
Previously these scopes were only exported via the `opencl` and `hip`
variants of these functions. However, this made it difficult to use
outside of those languages and the semantics were different from the
standard GNU versions. This patch introduces a `__scoped_atomic` variant
for the common functions. There was some discussion over whether or not
these should be overloads of the existing ones, or simply new variants.
I leant towards new variants to be less disruptive.
The scope here can be one of the following
```
__MEMORY_SCOPE_SYSTEM // All devices and systems
__MEMORY_SCOPE_DEVICE // Just this device
__MEMORY_SCOPE_WRKGRP // A 'work-group' AKA CUDA block
__MEMORY_SCOPE_WVFRNT // A 'wavefront' AKA CUDA warp
__MEMORY_SCOPE_SINGLE // A single thread.
```
Naming consistency was attempted, but it is difficult to capture to full
spectrum with no many names. Suggestions appreciated.
We used to assume that the CXXRecordDecl passed to the 1st argument
always had a definition. This is not true since a pointer to an
incomplete type was not excluded.
Fixes https://github.com/llvm/llvm-project/issues/63506
Just follow along with the reassociate pragma. This allows locally
setting the arcp fast math flag. Previously you could only access this
through the global -freciprocal-math.
Fixes#64798
The data size is required for implementing the `memmove` optimization
for `std::copy`, `std::move` etc. correctly as well as replacing
`__compressed_pair` with `[[no_unique_address]]` in libc++. Since the
compiler already knows the data size, we can avoid some complexity by
exposing that information.
Adds a new `__builtin_vectorelements()` function which returns the
number of elements for a given vector either at compile-time for
fixed-sized vectors, e.g., created via `__attribute__((vector_size(N)))`
or at runtime via a call to `@llvm.vscale.i32()` for scalable vectors,
e.g., SVE or RISCV V.
The new builtin follows a similar path as `sizeof()`, as it essentially
does the same thing but for the number of elements in vector instead of
the number of bytes. This allows us to re-use a lot of the existing
logic to handle types etc.
A small side addition is `Type::isSizelessVectorType()`, which we need
to distinguish between sizeless vectors (SVE, RISCV V) and sizeless
types (WASM).
This is the [corresponding
discussion](https://discourse.llvm.org/t/new-builtin-function-to-get-number-of-lanes-in-simd-vectors/73911).
This is information that the compiler already has, and should be exposed
so that the library doesn't need to reimplement the exact same
functionality.
Differential Revision: https://reviews.llvm.org/D135341
I'm reverting this on principle, since it didn't get the Phabricator
approval I thought it had (only an informal LGTM). Will re-apply once
it has been properly approved.
This reverts commit e1bfeb6bcc.
This is information that the compiler already has, and should be exposed
so that the library doesn't need to reimplement the exact same
functionality.
Differential Revision: https://reviews.llvm.org/D135341
Builtin function `__builtin_isfpclass` now can be called for a vector
of floating-point values. In this case it is applied to the vector
elementwise and produces vector of integer values.
Differential Revision: https://reviews.llvm.org/D153339
As discussed on #46593 - this enables us to use __lzcnt / __popcnt intrinsics inside constexpr code.
Differential Revision: https://reviews.llvm.org/D157420
This changes some public references of C2x to be C23, corrects standard
citations to use the final paragraph numbers, and adds some information
about differences between C17 and C23 modes.
Add codegen for llvm bitreverse elementwise builtin
The bitreverse elementwise builtin is necessary for HLSL codegen.
Tests were added to make sure that the expected errors are encountered when these functions are given inputs of incompatible types, or too many inputs.
The new builtin is restricted to integer types only.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D156357
Add codegen for llvm pow elementwise builtin
The pow elementwise builtin is necessary for HLSL codegen.
Tests were added to make sure that the expected errors are encountered when these functions are given inputs of incompatible types, or too many inputs.
The new builtin is restricted to floating point types only.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D153310
These are basically the same thing and only differ for strictfp,
so add both for future proofing. Note all the elementwise functions are
currently broken for strictfp, and use non-constrained ops. Add a test
that demonstrates this, but doesn't attempt to fix it.
A new builtin function __builtin_isfpclass is added. It is called as:
__builtin_isfpclass(<floating point value>, <test>)
and returns an integer value, which is non-zero if the floating point
argument falls into one of the classes specified by the second argument,
and zero otherwise. The set of classes is an integer value, where each
value class is represented by a bit. There are ten data classes, as
defined by the IEEE-754 standard, they are represented by bits:
0x0001 (__FPCLASS_SNAN) - Signaling NaN
0x0002 (__FPCLASS_QNAN) - Quiet NaN
0x0004 (__FPCLASS_NEGINF) - Negative infinity
0x0008 (__FPCLASS_NEGNORMAL) - Negative normal
0x0010 (__FPCLASS_NEGSUBNORMAL) - Negative subnormal
0x0020 (__FPCLASS_NEGZERO) - Negative zero
0x0040 (__FPCLASS_POSZERO) - Positive zero
0x0080 (__FPCLASS_POSSUBNORMAL) - Positive subnormal
0x0100 (__FPCLASS_POSNORMAL) - Positive normal
0x0200 (__FPCLASS_POSINF) - Positive infinity
They have corresponding builtin macros to facilitate using the builtin
function:
if (__builtin_isfpclass(x, __FPCLASS_NEGZERO | __FPCLASS_POSZERO) {
// x is any zero.
}
The data class encoding is identical to that used in llvm.is.fpclass
function.
Differential Revision: https://reviews.llvm.org/D152351
This commit implements support for WebAssembly table types and
respective builtins. Table tables are WebAssembly objects to store
reference types. They have a large amount of semantic restrictions
including, but not limited to, only being allowed to be declared
at the top-level as static arrays of zero-length. Not being arguments
or result of functions, not being stored ot memory, etc.
This commit introduces the __attribute__((wasm_table)) to attach to
arrays of WebAssembly reference types. And the following builtins to
manage tables:
* ref __builtin_wasm_table_get(table, idx)
* void __builtin_wasm_table_set(table, idx, ref)
* uint __builtin_wasm_table_size(table)
* uint __builtin_wasm_table_grow(table, ref, uint)
* void __builtin_wasm_table_fill(table, idx, ref, uint)
* void __builtin_wasm_table_copy(table, table, uint, uint, uint)
This commit also enables reference-types feature at bleeding-edge.
This is joint work with Alex Bradbury (@asb).
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D139010
_Generic accepts an expression operand whose type is matched against a
list of associations. The expression operand is unevaluated, but the
type matched is the type after lvalue conversion. This conversion loses
type information, which makes it more difficult to match against
qualified or incomplete types.
This extension allows _Generic to accept a type operand instead of an
expression operand. The type operand form does not undergo any
conversions and is matched directly against the association list.
This extension is also supported in C++ as we already supported
_Generic selection expressions there.
The RFC for this extension can be found at:
https://discourse.llvm.org/t/rfc-generic-selection-expression-with-a-type-operand/70388
Differential Revision: https://reviews.llvm.org/D149904