This implements the C++23 `[[assume]]` attribute.
Assumption information is lowered to a call to `@llvm.assume`, unless the expression has side-effects, in which case it is discarded and a warning is issued to tell the user that the assumption doesn’t do anything. A failed assumption at compile time is an error (unless we are in `MSVCCompat` mode, in which case we don’t check assumptions at compile time).
Due to performance regressions in LLVM, assumptions can be disabled with the `-fno-assumptions` flag. With it, assumptions will still be parsed and checked, but no calls to `@llvm.assume` will be emitted and assumptions will not be checked at compile time.
The implementation mostly reuses C++ code paths where possible,
including narrowing check in order to provide diagnostic messages in
case initializer for constexpr variable is not exactly representable in
target type.
The following won't work due to lack of support for other features:
- Diagnosing of underspecified declarations involving constexpr
- Constexpr attached to compound literals
Also due to lack of support for char8_t some of examples with utf-8
strings don't work properly.
Fixes https://github.com/llvm/llvm-project/issues/64742
This was reported (sort of) in a PR: #77703. The problem is that a
declarator 'owns' an attributes allocation via an `AttributePool`.
However, this example tries to copy a DeclaratorChunk from one
Declarator to another, so when the temporary Declarator goes out of
scope, it deletes the attribute it has tried to pass on via the chunk.
This patch ensures that we copy the 'ownership' of the attribute
correctly, and adds an assert to catch any other casess where this
happens.
Additionally, this was put in as a bug report, so this
Fixes#83611
A one-line fix, again : )
This fixes https://github.com/llvm/llvm-project/issues/78524 and the
similar example at
https://github.com/llvm/llvm-project/issues/78524#issuecomment-1899886951.
We previously increased the template depth by one after parsing the
attaching requires-clause on a lambda expression. This led to a problem
where the 'auto' parameters of nested abbreviated generic lambdas,
inside of a requires-expression, had the same depth as the template
parameters of the surrounding lambda. Consequently, during the
concept-checking stage, we ended up substituting these parameters with
the wrong template arguments because they were at different levels.
Our usual pattern when issuing an extension warning is to also issue a
default-off diagnostic about the keywords not being compatible with
standards before a certain point. This adds those diagnostics for C11
keywords.
In C++, alignas is an attribute specifier, while in C23, it's an alias
of _Alignas, which is a type specifier/qualifier. This means that they
parse differently in some circumstances.
Fixes https://github.com/llvm/llvm-project/issues/81472
According to [dcl.type.elab] p4:
> If an _elaborated-type-specifier_ appears with the `friend` specifier
as an entire _member-declaration_, the _member-declaration_ shall have
one of the following forms:
> `friend` _class-key_ _nested-name-specifier_(opt) _identifier_ `;`
> `friend` _class-key_ _simple-template-id_ `;`
> `friend` _class-key_ _nested-name-specifier_ `template`(opt)
_simple-template-id_ `;`
Notably absent from this list is the `enum` form of an
_elaborated-type-specifier_ "`enum` _nested-name-specifier_(opt)
_identifier_", which appears to be intentional per the resolution of
CWG2363.
Most major implementations accept these declarations, so the diagnostic
is a pedantic warning across all C++ versions.
In addition to the trivial cases previously diagnosed in C++98, we now
diagnose cases where the _elaborated-type-specifier_ has a dependent
_nested-name-specifier_:
```
template<typename T>
struct A
{
enum class E;
};
struct B
{
template<typename T>
friend enum A<T>::E; // pedantic warning: elaborated enumeration type cannot be a friend
};
template<typename T>
struct C
{
friend enum T::E; // pedantic warning: elaborated enumeration type cannot be a friend
};
```
Implements https://isocpp.org/files/papers/P2662R3.pdf
The feature is exposed as an extension in older language modes.
Mangling is not yet supported and that is something we will have to do before release.
This patch replaces the `__arm_new_za`, `__arm_shared_za` and
`__arm_preserves_za` attributes in favour of:
* `__arm_new("za")`
* `__arm_in("za")`
* `__arm_out("za")`
* `__arm_inout("za")`
* `__arm_preserves("za")`
As described in https://github.com/ARM-software/acle/pull/276.
One change is that `__arm_in/out/inout/preserves(S)` are all mutually
exclusive, whereas previously it was fine to write `__arm_shared_za
__arm_preserves_za`. This case is now represented with `__arm_in("za")`.
The current implementation uses the same LLVM attributes under the hood,
since `__arm_in/out/inout` are all variations of "shared ZA", so can use
the existing `aarch64_pstate_za_shared` attribute in LLVM.
#77941 will add support for the new "zt0" state as introduced
with SME2.
Invalid (direct) initializer would invalid `VarDecl` so
`InitializerScopeRAII` cannot restore scope stack balance.
As with other kind of initializer, `InitializerScopeRAII::pop()` is
moved up before `Sema::ActOnInitializerError()` which invalidates the
`VarDecl`, so scope can be balanced and current `DeclContext` can be
restored.
Fixes#30908
The constant evaluator could try to reference a lambda capture in a
static lambda call operator. Static lambdas can't have captures, so we
simply abort. Either the lambda needs to be made non-static, or the
capture (and reference to it) need to be removed.
Fixes: https://github.com/llvm/llvm-project/issues/74608
Currently when parsing a nested requirement we attempt to balance parens
if we have a parameter list. This will fail in some cases of ill-formed
code and keep going until we fall off the token stream and crash. This
fixes the hand parsing by using SkipUntil which will properly flag if we
don't find the expected tokens.
Fixes: https://github.com/llvm/llvm-project/issues/73112
Just follow along with the reassociate pragma. This allows locally
setting the arcp fast math flag. Previously you could only access this
through the global -freciprocal-math.
Fixes#64798
Fixes https://github.com/llvm/llvm-project/issues/58637.
Adds `isAlignas()` method on `AttributeCommonInfo` which accounts for
C++ `alignas` as well as C11 `_Alignas`.
The method is used to improve diagnostic in C when `_Alignas` is used in
C at the wrong location. This corrects the previously suggested move
of `_Alignas` past the declaration specifier, now warns attribute
`_Alignas` is ignored.
Based on https://reviews.llvm.org/D141177.
Re-landing 5d78b78c85 which was reverted.
This patches implements the auto keyword from the N3007 standard
specification.
This allows deducing the type of the variable like in C++:
```
auto nb = 1;
auto chr = 'A';
auto str = "String";
```
The list of statements which allows the usage of auto:
* Basic variables declarations (int, float, double, char, char*...)
* Macros declaring a variable with the auto type
The list of statements which will not work with the auto keyword:
* auto arrays
* sizeof(), alignas()
* auto parameters, auto return type
* auto as a struct/typedef member
* uninitialized auto variables
* auto in an union
* auto as a enum type specifier
* auto casts
* auto in an compound literals
Differential Revision: https://reviews.llvm.org/D133289
This patches implements the auto keyword from the N3007 standard
specification.
This allows deducing the type of the variable like in C++:
```
auto nb = 1;
auto chr = 'A';
auto str = "String";
```
The list of statements which allows the usage of auto:
* Basic variables declarations (int, float, double, char, char*...)
* Macros declaring a variable with the auto type
The list of statements which will not work with the auto keyword:
* auto arrays
* sizeof(), alignas()
* auto parameters, auto return type
* auto as a struct/typedef member
* uninitialized auto variables
* auto in an union
* auto as a enum type specifier
* auto casts
* auto in an compound literals
Differential Revision: https://reviews.llvm.org/D133289
This patch makes clang diagnose extensive cases of consteval if and is_constant_evaluated usage that are tautologically true or false.
This introduces a new IsRuntimeEvaluated boolean flag to Sema::ExpressionEvaluationContextRecord that means the immediate appearance of if consteval or is_constant_evaluated are tautologically false(e.g. inside if !consteval {} block or non-constexpr-qualified function definition body)
This patch also pushes new expression evaluation context when parsing the condition of if constexpr and initializer of constexpr variables so that Sema can be aware that the use of consteval if and is_consteval are tautologically true in if constexpr condition and constexpr variable initializers.
BEFORE this patch, the warning for is_constant_evaluated was emitted from constant evaluator. This patch moves the warning logic to Sema in order to diagnose tautological use of is_constant_evaluated in the same way as consteval if.
This patch separates initializer evaluation context from InitializerScopeRAII.
This fixes a bug that was happening when user takes address of function address in initializers of non-local variables.
Fixes https://github.com/llvm/llvm-project/issues/43760
Fixes https://github.com/llvm/llvm-project/issues/51567
Reviewed By: cor3ntin, ldionne
Differential Revision: https://reviews.llvm.org/D155064
clang was crashing on a lambda attribute with a statement expression
that contained a `return`.
It attempted to access the lambda type which was unknown at that point.
Fixes https://github.com/llvm/llvm-project/issues/48527
In Parser::ParseDirectDeclarator(...) in some cases ill-formed code can cause an
annotation token to end up where it was not expected. The fix is to add a
!Tok.isAnnotation() guard before attempting to access identifier info.
This fixes: https://github.com/llvm/llvm-project/issues/64836
Differential Revision: https://reviews.llvm.org/D158804
This is a complementary to D156237.
These attributes have custom parsing logic.
Reviewed By: cor3ntin
Differential Revision: https://reviews.llvm.org/D159024
We have a new policy in place making links to private resources
something we try to avoid in source and test files. Normally, we'd
organically switch to the new policy rather than make a sweeping change
across a project. However, Clang is in a somewhat special circumstance
currently: recently, I've had several new contributors run into rdar
links around test code which their patch was changing the behavior of.
This turns out to be a surprisingly bad experience, especially for
newer folks, for a handful of reasons: not understanding what the link
is and feeling intimidated by it, wondering whether their changes are
actually breaking something important to a downstream in some way,
having to hunt down strangers not involved with the patch to impose on
them for help, accidental pressure from asking for potentially private
IP to be made public, etc. Because folks run into these links entirely
by chance (through fixing bugs or working on new features), there's not
really a set of problematic links to focus on -- all of the links have
basically the same potential for causing these problems. As a result,
this is an omnibus patch to remove all such links.
This was not a mechanical change; it was done by manually searching for
rdar, radar, radr, and other variants to find all the various
problematic links. From there, I tried to retain or reword the
surrounding comments so that we would lose as little context as
possible. However, because most links were just a plain link with no
supporting context, the majority of the changes are simple removals.
Differential Review: https://reviews.llvm.org/D158071
This reverts commit f2583f3acf.
There is a large body of non-conforming C-like code using format strings
like this:
#define PRIuS "zu"
void h(size_t foo, size_t bar) {
printf("foo is %"PRIuS", bar is %"PRIuS, foo, bar);
}
Rejecting this code would be very disruptive. We could decide to do
that, but it's sufficiently disruptive that I think it requires
gathering more community consensus with an RFC, and Aaron indicated [1]
it's OK to revert for now so continuous testing systems can see past
this issue while we decide what to do.
[1] https://reviews.llvm.org/D153156#4607717
This prevents further parsing of tokens (that'll be freed) inside method
body by propagating EOF emitted by reaching code completion token up the parsing
stack.
Differential Revision: https://reviews.llvm.org/D158269
The attributes changes were left out of Clang 17.
Attributes that used to take a string literal now accept an unevaluated
string literal instead, which means they reject numeric escape sequences
and strings literal with an encoding prefix - but the later was already
ill-formed in most cases.
We need to know that we are going to parse an unevaluated string literal
before we do - so we can reject numeric escape sequence,
so we derive from Attrs.td which attributes parameters are expected
to be string literals.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D156237
This fix PR37919
The below code produces -Wconstant-logical-operand for the first statement,
but not the second.
void foo(int x) {
if (x && 5) {}
if (5 && x) {}
}
Reviewed By: nickdesaulniers
Differential Revision: https://reviews.llvm.org/D142609
Expressions like
```
struct A {};
...
new struct A {};
struct A* b = (1 == 1) ? new struct A : new struct A;
```
were parsed as redefinitions of `struct A` and failed, however as clarified by
`CWG2141` new-expression cannot define a type, so both these examples
should be considered as references to the previously declared `struct A`.
The patch adds a "new" kind context for parsing declaration specifiers in
addition to already existing declarator context in order to track that
the parser is inside of a new expression.
Fixes https://github.com/llvm/llvm-project/issues/34341
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D153857
Allow specifying 'nomerge' attribute for function pointers,
e.g. like in the following C code:
extern void (*foo)(void) __attribute__((nomerge));
void bar(long i) {
if (i)
foo();
else
foo();
}
With the goal to attach 'nomerge' to both calls done through 'foo':
@foo = external local_unnamed_addr global ptr, align 8
define dso_local void @bar(i64 noundef %i) local_unnamed_addr #0 {
; ...
%0 = load ptr, ptr @foo, align 8, !tbaa !5
; ...
if.then:
tail call void %0() #1
br label %if.end
if.else:
tail call void %0() #1
br label %if.end
if.end:
ret void
}
; ...
attributes #1 = { nomerge ... }
Report a warning in case if 'nomerge' is specified for a variable that
is not a function pointer, e.g.:
t.c:2:22: warning: 'nomerge' attribute is ignored because 'j' is not a function pointer [-Wignored-attributes]
2 | int j __attribute__((nomerge));
| ^
The intended use-case is for BPF backend.
BPF provides a sort of "standard library" functions that are called
helpers. BPF also verifies usage of these helpers before program
execution. Because of limitations of verification / runtime model it
is important to keep calls to some of such helpers from merging.
An example could be found by the link [1], there input C code:
if (data_end - data > 1024) {
bpf_for_each_map_elem(&map1, cb, &cb_data, 0);
} else {
bpf_for_each_map_elem(&map2, cb, &cb_data, 0);
}
Is converted to bytecode equivalent to:
if (data_end - data > 1024)
tmp = &map1;
else
tmp = &map2;
bpf_for_each_map_elem(tmp, cb, &cb_data, 0);
However, BPF verification/runtime requires to use the same map address
for each particular `bpf_for_each_map_elem()` call.
The 'nomerge' attribute is a perfect match for this situation, but
unfortunately BPF helpers are declared as pointers to functions:
static long (*bpf_for_each_map_elem)(void *map, ...) = (void *) 164;
Hence, this commit, allowing to use 'nomerge' for function pointers.
[1] https://lore.kernel.org/bpf/03bdf90f-f374-1e67-69d6-76dd9c8318a4@meta.com/
Differential Revision: https://reviews.llvm.org/D152986
_Generic accepts an expression operand whose type is matched against a
list of associations. The expression operand is unevaluated, but the
type matched is the type after lvalue conversion. This conversion loses
type information, which makes it more difficult to match against
qualified or incomplete types.
This extension allows _Generic to accept a type operand instead of an
expression operand. The type operand form does not undergo any
conversions and is matched directly against the association list.
This extension is also supported in C++ as we already supported
_Generic selection expressions there.
The RFC for this extension can be found at:
https://discourse.llvm.org/t/rfc-generic-selection-expression-with-a-type-operand/70388
Differential Revision: https://reviews.llvm.org/D149904
... emitting them.
This makes later code easier to understand, since we emit the code
snippets line by line anyway.
It also fixes the weird underlinig of multi-line source ranges.
Differential Revision: https://reviews.llvm.org/D151215
Clang was rejecting valid code where GNU style attributes preceded C++ style
attributes in template declarations as follows:
template<int a>
__attribute__((deprecated("oh no!"))) [[deprecated("oh no!")]] void foo();
This PR fixes the bug.
Differential Revision: https://reviews.llvm.org/D151837