This is another step towards supporting DWARF5 checksums and inline
source code in LLDB. This is a reland of #85468 but without the
functional change of storing the support file from the line table (yet).
This caused following warnings in an LLDB build:
```
[237/1072] Building CXX object tools/l...lusLanguage.dir/LibCxxSliceArray.cpp.o
/Volumes/Data/llvm-project/lldb/source/Plugins/Language/CPlusPlus/LibCxxSliceArray.cpp:38:53: warning: format specifies type 'unsigned long long' but the argument has type 'size_t' (aka 'unsigned long') [-Wformat]
38 | stream.Printf("stride=%" PRIu64 " size=%" PRIu64, stride, size);
| ~~~~~~~~~ ^~~~~~
/Volumes/Data/llvm-project/lldb/source/Plugins/Language/CPlusPlus/LibCxxSliceArray.cpp:38:61: warning: format specifies type 'unsigned long long' but the argument has type 'size_t' (aka 'unsigned long') [-Wformat]
38 | stream.Printf("stride=%" PRIu64 " size=%" PRIu64, stride, size);
| ~~~~~~~~~ ^~~~
2 warnings generated.
```
This patch simply changes the format specifiers to use the `%zu` for
`size_t`s.
Change GetNumChildren()/CalculateNumChildren() methods return
llvm::Expected
This is an NFC change that does not yet add any error handling or change
any code to return any errors.
This is the second big change in the patch series started with
https://github.com/llvm/llvm-project/pull/83501
A follow-up PR will wire up error handling.
Change GetNumChildren()/CalculateNumChildren() methods return
llvm::Expected
This is an NFC change that does not yet add any error handling or change
any code to return any errors.
This is the second big change in the patch series started with
https://github.com/llvm/llvm-project/pull/83501
A follow-up PR will wire up error handling.
This formatter
https://github.com/llvm/llvm-project/pull/78609
was originally passing the signed seconds (which can refer to times in
the past) with an unsigned printf formatter, and had tests that expected
to see negative values from the printf which always failed on macOS. I'm
not clear how they ever passed on any platform.
Fix the printf to print seconds as a signed value, and re-enable the
tests.
This avoids duplicating the logic to get the first
element of a libc++ `__compressed_pair`. This will
be useful in supporting upcoming changes to the layout
of `__compressed_pair`.
Drive-by changes:
* Renamed `m_item` to `size_node` for readability;
`m_item` suggests it's a member variable, which it
is not.
The `(( )?&)?` appears to match types which are references. However lldb
can load the
correct data formatters without having to pattern match against a `&`
suffix.
The suffix may have been needed at one point, but it's no longer needed.
This patch fixes:
lldb/source/Plugins/Language/CPlusPlus/LibCxx.cpp:1108:39: error:
format specifies type 'long long' but the argument has type
'std::time_t' (aka 'long') [-Werror,-Wformat]
lldb/source/Plugins/Language/CPlusPlus/LibCxx.cpp:1116:64: error:
format specifies type 'long long' but the argument has type
'std::time_t' (aka 'long') [-Werror,-Wformat]
This fixes:
```
[6331/7452] Building CXX object tools\lldb\source\Plugins\Language\CPlusPlus\CMakeFiles\lldbPluginCPlusPlusLanguage.dir\LibCxx.cpp.obj
C:\git\llvm-project\lldb\source\Plugins\Language\CPlusPlus\LibCxx.cpp(1108,38): warning: format specifies type 'long' but the argument has type 'std::time_t' (aka 'long long') [-Wformat]
1108 | stream.Printf("timestamp=%ld s", seconds);
| ~~~ ^~~~~~~
| %lld
C:\git\llvm-project\lldb\source\Plugins\Language\CPlusPlus\LibCxx.cpp(1116,63): warning: format specifies type 'long' but the argument has type 'std::time_t' (aka 'long long') [-Wformat]
1116 | stream.Printf("date/time=%s timestamp=%ld s", str.data(), seconds);
| ~~~ ^~~~~~~
| %lld
2 warnings generated.
```
This fixes missing inlined function names when formatting frame and the
`Block` in `SymbolContext` is a lexical block (e.g.
`DW_TAG_lexical_block` in Dwarf).
This is a followup of #76983 and adds the libc++ data formatters for
- weekday,
- weekday_indexed,
- weekday_last,
- month_weekday,
- month_weekday_last,
- year_month,
- year_month_day_last
- year_month_weekday, and
- year_month_weekday_last.
This adds a subset of the C++20 calendar data formatters:
- day,
- month,
- year,
- month_day,
- month_day_last, and
- year_month_day.
A followup patch will add the missing calendar data formatters:
- weekday,
- weekday_indexed,
- weekday_last,
- month_weekday,
- month_weekday_last,
- year_month,
- year_month_day_last
- year_month_weekday, and
- year_month_weekday_last.
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
Add the ability to get a C++ vtable ValueObject from another
ValueObject.
This patch adds the ability to ask a ValueObject for a ValueObject that
represents the virtual function table for a C++ class. If the
ValueObject is not a C++ class with a vtable, a valid ValueObject value
will be returned that contains an appropriate error. If it is successful
a valid ValueObject that represents vtable will be returned. The
ValueObject that is returned will have a name that matches the demangled
value for a C++ vtable mangled name like "vtable for <class-name>". It
will have N children, one for each virtual function pointer. Each
child's value is the function pointer itself, the summary is the
symbolication of this function pointer, and the type will be a valid
function pointer from the debug info if there is debug information
corresponding to the virtual function pointer.
The vtable SBValue will have the following:
- SBValue::GetName() returns "vtable for <class>"
- SBValue::GetValue() returns a string representation of the vtable
address
- SBValue::GetSummary() returns NULL
- SBValue::GetType() returns a type appropriate for a uintptr_t type for
the current process
- SBValue::GetLoadAddress() returns the address of the vtable adderess
- SBValue::GetValueAsUnsigned(...) returns the vtable address
- SBValue::GetNumChildren() returns the number of virtual function
pointers in the vtable
- SBValue::GetChildAtIndex(...) returns a SBValue that represents a
virtual function pointer
The child SBValue objects that represent a virtual function pointer has
the following values:
- SBValue::GetName() returns "[%u]" where %u is the vtable function
pointer index
- SBValue::GetValue() returns a string representation of the virtual
function pointer
- SBValue::GetSummary() returns a symbolicated respresentation of the
virtual function pointer
- SBValue::GetType() returns the function prototype type if there is
debug info, or a generic funtion prototype if there is no debug info
- SBValue::GetLoadAddress() returns the address of the virtual function
pointer
- SBValue::GetValueAsUnsigned(...) returns the virtual function pointer
- SBValue::GetNumChildren() returns 0
- SBValue::GetChildAtIndex(...) returns invalid SBValue for any index
Examples of using this API via python:
```
(lldb) script vtable = lldb.frame.FindVariable("shape_ptr").GetVTable()
(lldb) script vtable
vtable for Shape = 0x0000000100004088 {
[0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
[1] = 0x0000000100003e4c a.out`Shape::~Shape() at main.cpp:3
[2] = 0x0000000100003e7c a.out`Shape::area() at main.cpp:4
[3] = 0x0000000100003e3c a.out`Shape::optional() at main.cpp:7
}
(lldb) script c = vtable.GetChildAtIndex(0)
(lldb) script c
(void ()) [0] = 0x0000000100003d20 a.out`Shape::~Shape() at main.cpp:3
```
Since D101206 (`ba79fb2e1ff7130cde02fbbd325f0f96f8a522ca`) the `__hash_node::__value_`
member is wrapped in an anonymous union. `ValueObject::GetChildMemberWithName` doesn't see
through the union.
This patch accounts for this possible new layout by getting a handle to
the union before doing the by-name `__value_` lookup.
## Description
This pull request adds a new `stop-at-user-entry` option to LLDB
`process launch` command, allowing users to launch a process and pause
execution at the entry point of the program (for C-based languages,
`main` function).
## Motivation
This option provides a convenient way to begin debugging a program by
launching it and breaking at the desired entry point.
## Changes Made
- Added `stop-at-user-entry` option to `Options.td` and the
corresponding case in `CommandOptionsProcessLaunch.cpp` (short option is
'm')
- Implemented `GetUserEntryPointName` method in the Language plugins
available at the moment.
- Declared the `CreateBreakpointAtUserEntry` method in the Target API.
- Create Shell test for the command
`command-process-launch-user-entry.test`.
## Usage
`process launch --stop-at-user-entry` or `process launch -m` launches
the process and pauses execution at the entry point of the program.
We noticed some performance issue while in lldb-vscode for grabing the
name of the SBValue. Profiling shows SBValue::GetName() can cause
synthetic children provider of shared/unique_ptr to deference underlying
object and complete it type.
This patch lazily moves the dereference from synthetic child provider's
Update() method to GetChildAtIndex() so that SBValue::GetName() won't
trigger the slow code path.
Here is the culprit slow code path:
```
...
frame #59: 0x00007ff4102e0660 liblldb.so.15`SymbolFileDWARF::CompleteType(this=<unavailable>, compiler_type=0x00007ffdd9829450) at SymbolFileDWARF.cpp:1567:25 [opt]
...
frame #67: 0x00007ff40fdf9bd4 liblldb.so.15`lldb_private::ValueObject::Dereference(this=0x0000022bb5dfe980, error=0x00007ffdd9829970) at ValueObject.cpp:2672:41 [opt]
frame #68: 0x00007ff41011bb0a liblldb.so.15`(anonymous namespace)::LibStdcppSharedPtrSyntheticFrontEnd::Update(this=0x000002298fb94380) at LibStdcpp.cpp:403:40 [opt]
frame #69: 0x00007ff41011af9a liblldb.so.15`lldb_private::formatters::LibStdcppSharedPtrSyntheticFrontEndCreator(lldb_private::CXXSyntheticChildren*, std::shared_ptr<lldb_private::ValueObject>) [inlined] (anonymous namespace)::LibStdcppSharedPtrSyntheticFrontEnd::LibStdcppSharedPtrSyntheticFrontEnd(this=0x000002298fb94380, valobj_sp=<unavailable>) at LibStdcpp.cpp:371:5 [opt]
...
frame #78: 0x00007ff40fdf6e42 liblldb.so.15`lldb_private::ValueObject::CalculateSyntheticValue(this=0x000002296c66a500) at ValueObject.cpp:1836:27 [opt]
frame #79: 0x00007ff40fdf1939 liblldb.so.15`lldb_private::ValueObject::GetSyntheticValue(this=<unavailable>) at ValueObject.cpp:1867:3 [opt]
frame #80: 0x00007ff40fc89008 liblldb.so.15`ValueImpl::GetSP(this=0x0000022c71b90de0, stop_locker=0x00007ffdd9829d00, lock=0x00007ffdd9829d08, error=0x00007ffdd9829d18) at SBValue.cpp:141:46 [opt]
frame #81: 0x00007ff40fc7d82a liblldb.so.15`lldb::SBValue::GetSP(ValueLocker&) const [inlined] ValueLocker::GetLockedSP(this=0x00007ffdd9829d00, in_value=<unavailable>) at SBValue.cpp:208:21 [opt]
frame #82: 0x00007ff40fc7d817 liblldb.so.15`lldb::SBValue::GetSP(this=0x00007ffdd9829d90, locker=0x00007ffdd9829d00) const at SBValue.cpp:1047:17 [opt]
frame #83: 0x00007ff40fc7da6f liblldb.so.15`lldb::SBValue::GetName(this=0x00007ffdd9829d90) at SBValue.cpp:294:32 [opt]
...
```
Differential Revision: https://reviews.llvm.org/D159542
`std::basic_string<char>` is not a regex, and treating it as such could
unintentionally
cause a formatter to substring match a template type parameter, for
example:
`std::vector<std::basic_string<char>>`.
Differential Revision: https://reviews.llvm.org/D158663
ConstString can be implicitly converted into a llvm::StringRef. This is
very useful in many places, but it also hides places where we are
creating a ConstString only to use it as a StringRef for the entire
lifespan of the ConstString object.
I locally removed the implicit conversion and found some of the places we
were doing this.
Differential Revision: https://reviews.llvm.org/D159237
The usage of this variable was removed in `4f14c17df70916913d71914343dd4f6c709e218d`.
This is no longer used inside this file. Since the call to
`GetPersistentExpressionStateForLanguage` has side-effects I marked this
NFCI. But there is no good reason we need this here.
Differential Revision: https://reviews.llvm.org/D157992
Fix incorrect uses of LLDB_LOG_ERROR. The macro doesn't automatically
inject the error in the log message: it merely passes the error as the
first argument to formatv and therefore must be referenced with {0}.
Thanks to Nicholas Allegra for collecting a list of places where the
macro was misused.
rdar://111581655
Differential revision: https://reviews.llvm.org/D154530
This doesn't really use fast comparison or string uniqueness. In fact,
all of the current callers pass an empty string for type_name. The only
reason I don't remove it is because it looks like it is used downstream
for swift.
Differential Revision: https://reviews.llvm.org/D153810
Existing callers of `GetChildAtIndex` pass true for can_create. This change
makes true the default value, callers don't have to pass an opaque true.
See also D151966 for the same change to `GetChildMemberWithName`.
Differential Revision: https://reviews.llvm.org/D152031
It turns out all existing callers of `GetChildMemberWithName` pass true for `can_create`.
This change makes `true` the default value, callers don't have to pass an opaque true.
Differential Revision: https://reviews.llvm.org/D151966
Following D151810, this changes `GetChildAtNamePath` to take a path of `StringRef`
values instead of `ConstString`.
Differential Revision: https://reviews.llvm.org/D151813
As with D151615, which changed `GetIndexOfChildMemberWithName` to take a `StringRef`
instead of a `ConstString`, this change does the same for `GetIndexOfChildWithName`.
Differential Revision: https://reviews.llvm.org/D151811
`GetChildMemberWithName` does not need a `ConstString`. This change makes the function
take a `StringRef` instead, which alleviates the need for callers to construct a
`ConstString`. I don't expect this change to improve performance, only ergonomics.
This is in support of Alex's effort to replace `ConstString` where appropriate.
There are related `ValueObject` functions that can also be changed, if this is accepted.
Differential Revision: https://reviews.llvm.org/D151615
This mimicks the implementation of the libstdcpp std::unique_ptr
formatter.
This has been attempted several years ago in
`0789722d85cf1f1fdbe2ffb2245ea0ba034a9f94` but was reverted in
`e7dd3972094c2f2fb42dc9d4d5344e54a431e2ce`.
The difference to the original patch is that we now maintain
a `$$dereference$$` member and we only store weak pointers
to the other children inside the synthetic frontend. This is
what the libc++ formatters do to prevent the recursion mentioned
in the revert commit.
This patch fixes libstdc++ data formatter for reference/pointer to std::string.
The failure testcases are added which succeed with the patch.
Differential Revision: https://reviews.llvm.org/D150313
The unique_ptr prettyprinter calls `GetValueOfLibCXXCompressedPair`,
which looks for a `__value_` child. However, when the second value in
the compressed pair is not an empty class, there are two `__value_`
children because `__compressed_pair` derives twice from
`__compressed_pair_elem`, one for each member of the pair. And then the
lookup fails because it's ambiguous.
This patch makes the following changes:
- Rename `GetValueOfLibCXXCompressedPair` to
`GetFirstValueOfLibCXXCompressedPair`, and add a similar function to
get the second value. Put both functions in
Plugin/Language/CPlusPlus/LibCxx.cpp because it seems inappropriate to
have libcxx-specific helpers separate from all the libcxx-dependent
code.
- Read the second value of the `__ptr_` pair and display a "deleter"
child in the unique_ptr synthetic child provider, when available.
- Add a test case for the non-empty deleter case.
Differential Revision: https://reviews.llvm.org/D148662