While adding register fields I realised that the AUXV values for Linux
and FreeBSD disagree here.
So I've added a FreeBSD specific HWCAP value that I can use from FreeBSD
specific code.
The alternative is translating GetAuxValue calls depending on platform,
which requires that we know what we are at all times.
Another way would be to convert the entries' values when we construct
the AuxVector but the platform specific call that reads the data just
returns a raw array. So adding another layer here is more disruption.
AddressableBits is in the Utility module of LLDB. It currently directly
refers to Process, which is from the Target LLDB module. This is a
layering violation which concretely means that it is impossible to link
anything that uses Utility without it also using Target as well. This is
generally not an issue for LLDB (since everything is built together) but
it may make it difficult to write unit tests for AddressableBits later
on.
Darwin AArch64 application processors are run with Top Byte Ignore mode
enabled so metadata may be stored in the top byte, it needs to be
ignored when reading/writing memory. David Spickett handled this already
in the base class Process::ReadMemory but ProcessMachCore overrides that
method (to avoid the memory cache) and did not pick up the same change.
I add a test case that creates a pointer with metadata in the top byte
and dereferences it with a live process and with a corefile.
rdar://123784501
535da10842 introduced a check, when execve fails,
to see if we are allowed to trace programs at all.
Unfortunately because we like to call Status vars "error" and "status"
in various combinations, one got misnamed. This lead to lldb-server trying
to make an error value out of a success value when you did the following:
```
$ ./bin/lldb-server gdbserver 127.0.0.1:1234 -- is_not_a_file
Assertion failed: (Err && "Cannot create Expected<T> from Error success value."), function Expected...
```
This happened because the execve fails, but the check whether we can
trace says yes we can trace, but then we use the Status from the check
to create the return value. That Status is in fact a success value not
the failed Status we got from the execve attempt.
With the name corrected you now get:
```
$ ./bin/lldb-server gdbserver 127.0.0.1:1234 -- is_not_a_file
error: failed to launch 'is_not_a_file': execve failed: No such file or directory
```
Which is what we expect to see. This also fixes the test `TestGDBRemoteLaunch.py`
when asserts are enabled.
We got user reporting lldb crash while the debuggee is calling vfork()
concurrently from multiple threads.
The crash happens because the current implementation can only handle
single vfork, vforkdone protocol transaction.
This diff fixes the crash by lldb-server storing forked debuggee's <pid,
tid> pair in jstopinfo which will be decoded by lldb client to create
StopInfoVFork for follow parent/child policy. Each StopInfoVFork will
later have a corresponding vforkdone packet. So the patch also changes
the `m_vfork_in_progress` to be reference counting based.
Two new test cases are added which crash/assert without the changes in
this patch.
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
Partly, there's just a lot of unnecessary boiler plate. It's also
possible to define combinations of arguments that make no sense (e.g.
eArgRepeatPlus followed by eArgRepeatPlain...) but these are never
checked since we just push_back directly into the argument definitions.
This commit is step 1 of this cleanup - do the obvious stuff. In it, all
the simple homogenous argument lists and the breakpoint/watchpoint
ID/Range types, are set with common functions. This is an NFC change, it
just centralizes boiler plate. There's no checking yet because you can't
get a single argument wrong.
The end goal is that all argument definition goes through functions and
m_arguments is hidden so that you can't define inconsistent argument
sets.
This is next in my series of "fix the racey tests that fail on
greendragon" addressing the failure of TestConcurrentManyBreakpoints.py
where we set a breakpoint in a function that 100 threads execute, and we
check that we hit the breakpoint 100 times. But sometimes it is only hit
99 times, and the test fails.
When we hit a software breakpoint, the pc value for the thread is the
address of the breakpoint instruction - as if it had not been hit yet.
And because a user might ADD a breakpoint for the current pc from the
commandline, when we go to resume execution, any thread that is sitting
at a breakpoint site will be silently advanced past the breakpoint
instruction (disable bp, instruction step that thread, re-enable bp)
before resuming -- whether that thread has hit its breakpoint or not.
What this test is exposing is that there is another corner case, a
thread that is sitting at a breakpoint site but has not yet executed the
breakpoint instruction. The thread will have no stop reason, no mach
exception, so it will not be recorded as having hit the breakpoint
(because it hasn't yet). But when we resume execution, because it is
sitting at a breakpoint site, we advance past it and miss the breakpoint
hit.
In 2016 Abhishek Aggarwal handled a similar issue with a patch in
`ProcessGDBRemote::SetThreadStopInfo()`, adding a breakpoint StopInfo
for a thread sitting at a breakpoint site that has no stop reason.
debugserver's `jThreadsInfo` would not correctly execute Abhishek's code
though because it would respond with `"reason":"none"` for a thread with
no stop reason, and `SetThreadStopInfo()` expected an empty reason here.
The first part of my patch is to clear the `reason` if it is `"none"` so
we flow through the code correctly.
On Darwin, though, our stop reply packet (Txx...) includes the
`threads`, `thread-pcs`, and `jstopinfo` keys, which give us the tids
for all current threads, the pc values for those threads, and
`jstopinfo` has a JSON dictionary with the mach exceptions for all
threads that have a mach exception. In
`ProcessGDBRemote::CalculateThreadStopInfo()` we set the StopInfo for
each thread for a private stop and if we have `jstopinfo` it is the
source of all the StopInfos. I have to add the same logic here, to give
the thread a breakpoint StopInfo even though it hasn't executed the
breakpoint yet. In this case we are very early in thread construction
and I only have the information in the Txx stop reply packet -- tids,
pcs, and jstopinfo, so I can't use the normal general mechanisms of
going through the RegisterContext to get the pc, it's a bit different.
If I hack debugserver to not issue `jstopinfo`,
`CalculateThreadStopInfo` will fall back to sending `qThreadStopInfo`
for each thread and going through
`ProcessGDBRemote::SetThreadStopInfo()` to set the stop infos (and with
the `reason:none` fix, use Abhishek's code).
rdar://110549165
On arm64 machines, when there is a hardware breakpoint or watchpoint
set, and lldb has instruction-stepped a thread, and then done a
Process::Resume, we will sometimes receive an extra "instruction step
completed" mach exception and the pc has not advanced. From a user's
perspective, they hit Continue and lldb stops again at the same spot.
From the testsuite's perspective, this has been a constant source of
testsuite failures for any test using hardware watchpoints and
breakpoints, the arm64 CI bots seem especially good at hitting this
issue.
Jim and I have been slowly looking at this for a few months now, and
finally I decided to try to detect this situation in lldb and silently
resume the process again when it happens.
We were already detecting this "got an insn-step finished mach exception
but this thread was not instruction stepping" combination in
StopInfoMachException where we take the mach exception and create a
StopInfo object for it. We had a lot of logging we used to understand
the failure as it was hit on the bots in assert builds.
This patch adds a new case to `Thread::GetPrivateStopInfo()` to call the
StopInfo's (new) `IsContinueInterrupted()` method. In
StopInfoMachException, where we previously had logging for assert
builds, I now note it in an ivar, and when
`Thread::GetPrivateStopInfo()` asks if this has happened, we check all
of the combination of events that this comes up: We have a hardware
breakpoint or watchpoint, we were not instruction stepping this thread
but got an insn-step mach exception, the pc is the same as the previous
stop's pc. And in that case, `Thread::GetPrivateStopInfo()` returns no
StopInfo -- indicating that this thread would like to resume execution.
The `Thread` object has two StackFrameLists, `m_curr_frames_sp` and
`m_prev_frames_sp`. When a thread resumes execution, we move
`m_curr_frames_sp` in to `m_prev_frames_sp` and when it stops executing,
w euse `m_prev_frames_sp` to seed the new `m_curr_frames_sp` if most of
the stack is the same as before.
In this same location, I now save the Thread's RegisterContext::GetPC
into an ivar, `m_prev_framezero_pc`. StopInfoMachException needs this
information to check all of the conditions I outlined above for
`IsContinueInterrupted`.
This has passed exhaustive testing and we do not have any testsuite
failures for hardware watchpoints and breakpoints due to this kernel bug
with the patch in place. In focusing on these tests for thousands of
runs, I have found two other uncommon race conditions for the
TestConcurrent* tests on arm64. TestConcurrentManyBreakpoints.py (which
uses no hardware watchpoint/breakpoints) will sometimes only have 99
breakpoints when it expects 100, and any of the concurrent tests using
the shared harness (I've seen it in
TestConcurrentWatchBreakDelay.py,
TestConcurrentTwoBreakpointsOneSignal.py,
TestConcurrentSignalDelayWatch.py) can fail when the test harness checks
that there is only one thread still running at the end, and it finds two
-- one of them under pthread_exit / pthread_terminate. Both of these
failures happen on github main without my changes, and with my changes -
they are unrelated race conditions in these tests, and I'm sure I'll be
looking into them at some point if they hit the CI bots with frequency.
On my computer, these are in the 0.3-0.5% of the time class. But the CI
bots do have different timing.
debugserver on arm64 devices can manage both Byte Address Select
watchpoints (1-8 bytes) and MASK watchpoints (8 bytes-2 gigabytes). This
adds a SupportedWatchpointTypes key to the QSupported response from
debugserver with a list of these, so lldb can take full advantage of
them when creating larger regions with a single hardware watchpoint.
Also add documentation for this, and two other lldb extensions, to the
lldb-gdb-remote.txt documentation.
Re-enable TestLargeWatchpoint.py on Darwin systems when testing with the
in-tree built debugserver. I can remove the "in-tree built debugserver"
in the future when this new key is handled by an Xcode debugserver.
We have a Python script that needs to locate coredump path during
debugging so that we can retrieve certain metadata files associated with
it. Currently, there is no API for this.
This patch adds a new `SBProcess::GetCoreFile()` to retrieve target dump
file spec used for dump debugging. Note: this is different from the main
executable module spec. To achieve this, the patch hoists m_core_file
into PostMortemProcess for sharing.
---------
Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
This patch is the next piece of work in my Large Watchpoint proposal,
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
This patch breaks a user's watchpoint into one or more
WatchpointResources which reflect what the hardware registers can cover.
This means we can watch objects larger than 8 bytes, and we can watched
unaligned address ranges. On a typical 64-bit target with 4 watchpoint
registers you can watch 32 bytes of memory if the start address is
doubleword aligned.
Additionally, if the remote stub implements AArch64 MASK style
watchpoints (e.g. debugserver on Darwin), we can watch any power-of-2
size region of memory up to 2GB, aligned to that same size.
I updated the Watchpoint constructor and CommandObjectWatchpoint to
create a CompilerType of Array<UInt8> when the size of the watched
region is greater than pointer-size and we don't have a variable type to
use. For pointer-size and smaller, we can display the watched granule as
an integer value; for larger-than-pointer-size we will display as an
array of bytes.
I have `watchpoint list` now print the WatchpointResources used to
implement the watchpoint.
I added a WatchpointAlgorithm class which has a top-level static method
that takes an enum flag mask WatchpointHardwareFeature and a user
address and size, and returns a vector of WatchpointResources covering
the request. It does not take into account the number of watchpoint
registers the target has, or the number still available for use. Right
now there is only one algorithm, which monitors power-of-2 regions of
memory. For up to pointer-size, this is what Intel hardware supports.
AArch64 Byte Address Select watchpoints can watch any number of
contiguous bytes in a pointer-size memory granule, that is not currently
supported so if you ask to watch bytes 3-5, the algorithm will watch the
entire doubleword (8 bytes). The newly default "modify" style means we
will silently ignore modifications to bytes outside the watched range.
I've temporarily skipped TestLargeWatchpoint.py for all targets. It was
only run on Darwin when using the in-tree debugserver, which was a proxy
for "debugserver supports MASK watchpoints". I'll be adding the
aforementioned feature flag from the stub and enabling full mask
watchpoints when a debugserver with that feature is enabled, and
re-enable this test.
I added a new TestUnalignedLargeWatchpoint.py which only has one test
but it's a great one, watching a 22-byte range that is unaligned and
requires four 8-byte watchpoints to cover.
I also added a unit test, WatchpointAlgorithmsTests, which has a number
of simple tests against WatchpointAlgorithms::PowerOf2Watchpoints. I
think there's interesting possible different approaches to how we cover
these; I note in the unit test that a user requesting a watch on address
0x12e0 of 120 bytes will be covered by two watchpoints today, a
128-bytes at 0x1280 and at 0x1300. But it could be done with a 16-byte
watchpoint at 0x12e0 and a 128-byte at 0x1300, which would have fewer
false positives/private stops. As we try refining this one, it's helpful
to have a collection of tests to make sure things don't regress.
I tested this on arm64 macOS, (genuine) x86_64 macOS, and AArch64
Ubuntu. I have not modifed the Windows process plugins yet, I might try
that as a standalone patch, I'd be making the change blind, but the
necessary changes (see ProcessGDBRemote::EnableWatchpoint) are pretty
small so it might be obvious enough that I can change it and see what
the Windows CI thinks.
There isn't yet a packet (or a qSupported feature query) for the gdb
remote serial protocol stub to communicate its watchpoint capabilities
to lldb. I'll be doing that in a patch right after this is landed,
having debugserver advertise its capability of AArch64 MASK watchpoints,
and have ProcessGDBRemote add eWatchpointHardwareArmMASK to
WatchpointAlgorithms so we can watch larger than 32-byte requests on
Darwin.
I haven't yet tackled WatchpointResource *sharing* by multiple
Watchpoints. This is all part of the goal, especially when we may be
watching a larger memory range than the user requested, if they then add
another watchpoint next to their first request, it may be covered by the
same WatchpointResource (hardware watchpoint register). Also one "read"
watchpoint and one "write" watchpoint on the same memory granule need to
be handled, making the WatchpointResource cover all requests.
As WatchpointResources aren't shared among multiple Watchpoints yet,
there's no handling of running the conditions/commands/etc on multiple
Watchpoints when their shared WatchpointResource is hit. The goal beyond
"large watchpoint" is to unify (much more) the Watchpoint and Breakpoint
behavior and commands. I have a feeling I may be slowly chipping away at
this for a while.
Re-landing this patch after fixing two undefined behaviors in
WatchpointAlgorithms found by UBSan and by failures on different
CI bots.
rdar://108234227
This patch is the next piece of work in my Large Watchpoint proposal,
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
This patch breaks a user's watchpoint into one or more
WatchpointResources which reflect what the hardware registers can cover.
This means we can watch objects larger than 8 bytes, and we can watched
unaligned address ranges. On a typical 64-bit target with 4 watchpoint
registers you can watch 32 bytes of memory if the start address is
doubleword aligned.
Additionally, if the remote stub implements AArch64 MASK style
watchpoints (e.g. debugserver on Darwin), we can watch any power-of-2
size region of memory up to 2GB, aligned to that same size.
I updated the Watchpoint constructor and CommandObjectWatchpoint to
create a CompilerType of Array<UInt8> when the size of the watched
region is greater than pointer-size and we don't have a variable type to
use. For pointer-size and smaller, we can display the watched granule as
an integer value; for larger-than-pointer-size we will display as an
array of bytes.
I have `watchpoint list` now print the WatchpointResources used to
implement the watchpoint.
I added a WatchpointAlgorithm class which has a top-level static method
that takes an enum flag mask WatchpointHardwareFeature and a user
address and size, and returns a vector of WatchpointResources covering
the request. It does not take into account the number of watchpoint
registers the target has, or the number still available for use. Right
now there is only one algorithm, which monitors power-of-2 regions of
memory. For up to pointer-size, this is what Intel hardware supports.
AArch64 Byte Address Select watchpoints can watch any number of
contiguous bytes in a pointer-size memory granule, that is not currently
supported so if you ask to watch bytes 3-5, the algorithm will watch the
entire doubleword (8 bytes). The newly default "modify" style means we
will silently ignore modifications to bytes outside the watched range.
I've temporarily skipped TestLargeWatchpoint.py for all targets. It was
only run on Darwin when using the in-tree debugserver, which was a proxy
for "debugserver supports MASK watchpoints". I'll be adding the
aforementioned feature flag from the stub and enabling full mask
watchpoints when a debugserver with that feature is enabled, and
re-enable this test.
I added a new TestUnalignedLargeWatchpoint.py which only has one test
but it's a great one, watching a 22-byte range that is unaligned and
requires four 8-byte watchpoints to cover.
I also added a unit test, WatchpointAlgorithmsTests, which has a number
of simple tests against WatchpointAlgorithms::PowerOf2Watchpoints. I
think there's interesting possible different approaches to how we cover
these; I note in the unit test that a user requesting a watch on address
0x12e0 of 120 bytes will be covered by two watchpoints today, a
128-bytes at 0x1280 and at 0x1300. But it could be done with a 16-byte
watchpoint at 0x12e0 and a 128-byte at 0x1300, which would have fewer
false positives/private stops. As we try refining this one, it's helpful
to have a collection of tests to make sure things don't regress.
I tested this on arm64 macOS, (genuine) x86_64 macOS, and AArch64
Ubuntu. I have not modifed the Windows process plugins yet, I might try
that as a standalone patch, I'd be making the change blind, but the
necessary changes (see ProcessGDBRemote::EnableWatchpoint) are pretty
small so it might be obvious enough that I can change it and see what
the Windows CI thinks.
There isn't yet a packet (or a qSupported feature query) for the gdb
remote serial protocol stub to communicate its watchpoint capabilities
to lldb. I'll be doing that in a patch right after this is landed,
having debugserver advertise its capability of AArch64 MASK watchpoints,
and have ProcessGDBRemote add eWatchpointHardwareArmMASK to
WatchpointAlgorithms so we can watch larger than 32-byte requests on
Darwin.
I haven't yet tackled WatchpointResource *sharing* by multiple
Watchpoints. This is all part of the goal, especially when we may be
watching a larger memory range than the user requested, if they then add
another watchpoint next to their first request, it may be covered by the
same WatchpointResource (hardware watchpoint register). Also one "read"
watchpoint and one "write" watchpoint on the same memory granule need to
be handled, making the WatchpointResource cover all requests.
As WatchpointResources aren't shared among multiple Watchpoints yet,
there's no handling of running the conditions/commands/etc on multiple
Watchpoints when their shared WatchpointResource is hit. The goal beyond
"large watchpoint" is to unify (much more) the Watchpoint and Breakpoint
behavior and commands. I have a feeling I may be slowly chipping away at
this for a while.
rdar://108234227
There are 3 ways to create an EventDataBytes object: (const char *),
(llvm::StringRef), and (const void *, size_t len). All of these cases
can be handled under `llvm::StringRef`. Additionally, this allows us to
remove the otherwise unused `SetBytes`, `SwapBytes`, and
`SetBytesFromCString` methods.
BroadcastEvent currently takes its EventData* param and shoves it into
an Event object, which takes ownership of the pointer and places it into
a shared_ptr to manage the lifetime.
Instead of relying on `new` and passing raw pointers around, I think it
would make more sense to create the shared_ptr up front.
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
This patch replaces uses of StringRef::{starts,ends}with with
StringRef::{starts,ends}_with for consistency with
std::{string,string_view}::{starts,ends}_with in C++20.
I'm planning to deprecate and eventually remove
StringRef::{starts,ends}with.
We need to generate events when finalizing, or we won't know that we
succeeded in stopping the process to detach/kill. Instead, we stall and
then after our 20 interrupt timeout, we kill the process (even if we
were supposed to detach) and exit.
OTOH, we have to not generate events when the Process is being
destructed because shared_from_this has already been torn down, and
using it will cause crashes.
This patch is rearranging code a bit to add WatchpointResources to
Process. A WatchpointResource is meant to represent a hardware
watchpoint register in the inferior process. It has an address, a size,
a type, and a list of Watchpoints that are using this
WatchpointResource.
This current patch doesn't add any of the features of
WatchpointResources that make them interesting -- a user asking to watch
a 24 byte object could watch this with three 8 byte WatchpointResources.
Or a Watchpoint on 1 byte at 0x1002 and a second watchpoint on 1 byte at
0x1003, these must both be served by a single WatchpointResource on that
doubleword at 0x1000 on a 64-bit target, if two hardware watchpoint
registers were used to track these separately, one of them may not be
hit. Or if you have one Watchpoint on a variable with a condition set,
and another Watchpoint on that same variable with a command defined or
different condition, or ignorecount, both of those Watchpoints need to
evaluate their criteria/commands when their WatchpointResource has been
hit.
There's a bit of code movement to rearrange things in the direction I'll
need for implementing this feature, so I want to start with reviewing &
landing this mostly NFC patch and we can focus on the algorithmic
choices about how WatchpointResources are shared and handled as they're
triggeed, separately.
This patch also stops printing "Watchpoint <n> hit: old value: <x>, new
vlaue: <y>" for Read watchpoints. I could make an argument for print
"Watchpoint <n> hit: current value <x>" but the current output doesn't
make any sense, and the user can print the value if they are
particularly interested. Read watchpoints are used primarily to
understand what code is reading a variable.
This patch adds more fallbacks for how to print the objects being
watched if we have types, instead of assuming they are all integral
values, so a struct will print its elements. As large watchpoints are
added, we'll be doing a lot more of those.
To track the WatchpointSP in the WatchpointResources, I changed the
internal API which took a WatchpointSP and devolved it to a Watchpoint*,
which meant touching several different Process files. I removed the
watchpoint code in ProcessKDP which only reported that watchpoints
aren't supported, the base class does that already.
I haven't yet changed how we receive a watchpoint to identify the
WatchpointResource responsible for the trigger, and identify all
Watchpoints that are using this Resource to evaluate their conditions
etc. This is the same work that a BreakpointSite needs to do when it has
been tiggered, where multiple Breakpoints may be at the same address.
There is not yet any printing of the Resources that a Watchpoint is
implemented in terms of ("watchpoint list", or
SBWatchpoint::GetDescription).
"watchpoint set var" and "watchpoint set expression" take a size
argument which was previously 1, 2, 4, or 8 (an enum). I've changed this
to an unsigned int. Most hardware implementations can only watch 1, 2,
4, 8 byte ranges, but with Resources we'll allow a user to ask for
different sized watchpoints and set them in hardware-expressble terms
soon.
I've annotated areas where I know there is work still needed with
LWP_TODO that I'll be working on once this is landed.
I've tested this on aarch64 macOS, aarch64 Linux, and Intel macOS.
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
(cherry picked from commit fc6b72523f)
Currently when you interrupt a:
(lldb) process attach -w -n some_process
lldb just closes the connection to the stub and kills the
lldb_private::Process it made for the attach. The stub at the other end
notices the connection go down and exits because of that. But when
communication to a device is handled through some kind of proxy server
which isn't as well behaved as one would wish, that signal might not be
reliable, causing debugserver to persist on the machine, waiting to
steal the next instance of that process.
We can work around those failures by sending an explicit interrupt
before closing down the connection. The stub will also have to be
waiting for the interrupt for this to make any difference. I changed
debugserver to do that.
I didn't make the equivalent change in lldb-server. So long as you
aren't faced with a flakey connection, this should not be necessary.
This patch is rearranging code a bit to add WatchpointResources to
Process. A WatchpointResource is meant to represent a hardware
watchpoint register in the inferior process. It has an address, a size,
a type, and a list of Watchpoints that are using this
WatchpointResource.
This current patch doesn't add any of the features of
WatchpointResources that make them interesting -- a user asking to watch
a 24 byte object could watch this with three 8 byte WatchpointResources.
Or a Watchpoint on 1 byte at 0x1002 and a second watchpoint on 1 byte at
0x1003, these must both be served by a single WatchpointResource on that
doubleword at 0x1000 on a 64-bit target, if two hardware watchpoint
registers were used to track these separately, one of them may not be
hit. Or if you have one Watchpoint on a variable with a condition set,
and another Watchpoint on that same variable with a command defined or
different condition, or ignorecount, both of those Watchpoints need to
evaluate their criteria/commands when their WatchpointResource has been
hit.
There's a bit of code movement to rearrange things in the direction I'll
need for implementing this feature, so I want to start with reviewing &
landing this mostly NFC patch and we can focus on the algorithmic
choices about how WatchpointResources are shared and handled as they're
triggeed, separately.
This patch also stops printing "Watchpoint <n> hit: old value: <x>, new
vlaue: <y>" for Read watchpoints. I could make an argument for print
"Watchpoint <n> hit: current value <x>" but the current output doesn't
make any sense, and the user can print the value if they are
particularly interested. Read watchpoints are used primarily to
understand what code is reading a variable.
This patch adds more fallbacks for how to print the objects being
watched if we have types, instead of assuming they are all integral
values, so a struct will print its elements. As large watchpoints are
added, we'll be doing a lot more of those.
To track the WatchpointSP in the WatchpointResources, I changed the
internal API which took a WatchpointSP and devolved it to a Watchpoint*,
which meant touching several different Process files. I removed the
watchpoint code in ProcessKDP which only reported that watchpoints
aren't supported, the base class does that already.
I haven't yet changed how we receive a watchpoint to identify the
WatchpointResource responsible for the trigger, and identify all
Watchpoints that are using this Resource to evaluate their conditions
etc. This is the same work that a BreakpointSite needs to do when it has
been tiggered, where multiple Breakpoints may be at the same address.
There is not yet any printing of the Resources that a Watchpoint is
implemented in terms of ("watchpoint list", or
SBWatchpoint::GetDescription).
"watchpoint set var" and "watchpoint set expression" take a size
argument which was previously 1, 2, 4, or 8 (an enum). I've changed this
to an unsigned int. Most hardware implementations can only watch 1, 2,
4, 8 byte ranges, but with Resources we'll allow a user to ask for
different sized watchpoints and set them in hardware-expressble terms
soon.
I've annotated areas where I know there is work still needed with
LWP_TODO that I'll be working on once this is landed.
I've tested this on aarch64 macOS, aarch64 Linux, and Intel macOS.
https://discourse.llvm.org/t/rfc-large-watchpoint-support-in-lldb/72116
The Watchpoint and Breakpoint objects try to track the hardware index
that was used for them, if they are hardware wp/bp's. The majority of
our debugging goes over the gdb remote serial protocol, and when we set
the watchpoint/breakpoint, there is no (standard) way for the remote
stub to communicate to lldb which hardware index was used. We have an
lldb-extension packet to query the total number of watchpoint registers.
When a watchpoint is hit, there is an lldb extension to the stop reply
packet (documented in lldb-gdb-remote.txt) to describe the watchpoint
including its actual hardware index,
<addr within wp range> <wp hw index> <actual accessed address>
(the third field is specifically needed for MIPS). At this point, if the
stub reported these three fields (the stub is only required to provide
the first), we can know the actual hardware index for this watchpoint.
Breakpoints are worse; there's never any way for us to be notified about
which hardware index was used. Breakpoints got this as a side effect of
inherting from StoppointSite with Watchpoints.
We expose the watchpoint hardware index through "watchpoint list -v" and
through SBWatchpoint::GetHardwareIndex.
With my large watchpoint support, there is no *single* hardware index
that may be used for a watchpoint, it may need multiple resources. Also
I don't see what a user is supposed to do with this information, or an
IDE. Knowing the total number of watchpoint registers on the target, and
knowing how many Watchpoint Resources are currently in use, is helpful.
Knowing how many Watchpoint Resources
a single user-specified watchpoint needed to be implemented is useful.
But knowing which registers were used is an implementation detail and
not available until we hit the watchpoint when using gdb remote serial
protocol.
So given all that, I'm removing watchpoint hardware index numbers. I'm
changing the SB API to always return -1.
This patch adds support for saving minidumps with the arm64
architecture. It also will cause unsupported architectures to emit an
error where before this patch it would emit a minidump with partial
information. This new code is tested by the arm64 windows buildbot that
was failing:
https://lab.llvm.org/buildbot/#/builders/219/builds/6868
This is needed following this PR:
https://github.com/llvm/llvm-project/pull/71772
Similar to my previous patch (#71613) where I changed
`GetItemAtIndexAsString`, this patch makes the same change to
`GetItemAtIndexAsDictionary`.
`GetItemAtIndexAsDictionary` now returns a std::optional that is either
`std::nullopt` or is a valid pointer. Therefore, if the optional is
populated, we consider the pointer to always be valid (i.e. no need to
check pointer validity).
This register is a pseudo register but mirrors the architectural
register's contents. See:
https://developer.arm.com/documentation/ddi0616/latest/
For the full details. Example output:
```
(lldb) register read svcr
svcr = 0x0000000000000002
= (ZA = 1, SM = 0)
```
This is a Linux pseudo register provided by the NT_ARM_TAGGED_ADDR_CTRL
register set. It reflects the value passed to prctl
PR_SET_TAGGED_ADDR_CTRL.
https://docs.kernel.org/arch/arm64/memory-tagging-extension.html
The fields are made from the #defines the kernel provides for setting
the value. Its contents are constant so no runtime detection is needed
(once we've decided we have this register in the first place).
The permitted generated tags is technically a bitfield but at this time
we don't have a way to mark a field as preferring hex formatting.
```
(lldb) register read mte_ctrl
mte_ctrl = 0x000000000007fffb
= (TAGS = 65535, TCF_ASYNC = 0, TCF_SYNC = 1, TAGGED_ADDR_ENABLE = 1)
```
(4 bit tags mean 16 possible tags, 16 bit bitfield)
Testing has been added to TestMTECtrlRegister.py, which needed a more
granular way to check for XML support, so I've added hasXMLSupport that
can be used within a test case instead of skipping whole tests if XML
isn't supported.
Same for the core file tests.
Follows the format laid out in the Arm manual, AArch32 only fields are
ignored.
```
(lldb) register read fpcr
fpcr = 0x00000000
= (AHP = 0, DN = 0, FZ = 0, RMMode = 0, FZ16 = 0, IDE = 0, IXE = 0, UFE = 0, OFE = 0, DZE = 0, IOE = 0)
```
Tests use the first 4 fields that we know are always present.
Converted all the HCWAP defines to `UL` because I'm bound to
forget one if I don't do it now.
This one is easy because none of the fields depend on extensions. Only
thing to note is that I've ignored some AArch32 only fields.
```
(lldb) register read fpsr
fpsr = 0x00000000
= (QC = 0, IDC = 0, IXC = 0, UFC = 0, OFC = 0, DZC = 0, IOC = 0)
```
This patch should fix a test failure in
`Expr/TestIRMemoryMapWindows.test`:
https://lab.llvm.org/buildbot/#/builders/219/builds/6786
The problem here is that since 7991412 landed, all the
`ScriptInterpreter::CreateScripted*Interface` now return a `nullptr`
when using the base `ScriptInterpreter` instance, instead of
`ScriptInterpreterPython` for instance.
This nullptr is actually well handled in the various places where we
create a Scripted Interface, however, because of the way to instanciate
a process, the process plugin manager have to iterate over every process
plugin and call the `CreateInstance` static function that should
instanciate the right object.
So in the ScriptedProcess case, because we are getting a `nullptr` when
trying to create a `ScriptedProcessInterface`, we try to discard the
process object, which calls the Process destructor, which in turns calls
the `ScriptedProcess` plugin `IsAlive` method. That method will fire an
assertion if the scripted interface pointer is not allocated.
This patch address that issue by setting a flag when destroying the
ScriptedProcess object, and checks that flag when calling `IsAlive`.
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
The contents of which are mostly SPSR_EL1 as shown in the Arm manual,
with a few adjustments for things Linux says userspace shouldn't concern
itself with.
```
(lldb) register read cpsr
cpsr = 0x80001000
= (N = 1, Z = 0, C = 0, V = 0, SS = 0, IL = 0, ...
```
Some fields are always present, some depend on extensions. I've checked
for those extensions using HWCAP and HWCAP2.
To provide this for core files and live processes I've added a new class
LinuxArm64RegisterFlags. This is a container for all the registers we'll
want to have fields and handles detecting fields and updating register
info.
This is used by the native process as follows:
* There is a global LinuxArm64RegisterFlags object.
* The first thread takes a mutex on it, and updates the fields.
* Subsequent threads see that detection is already done, and skip it.
* All threads then update their own copy of the register information
with pointers to the field information contained in the global object.
This means that even though every thread will have the same fields, we
only detect them once and have one copy of the information.
Core files instead have a LinuxArm64RegisterFlags as a member, because
each core file could have different saved capabilities. The logic from
there is the same but we get HWACP values from the corefile note.
This handler class is Linux specific right now, but it can easily be
made more generic if needed. For example by using LLVM's FeatureBitset
instead of HWCAPs.
Updating register info is done with string comparison, which isn't
ideal. For CPSR, we do know the register number ahead of time but we do
not for other registers in dynamic register sets. So in the interest of
consistency, I'm going to use string comparison for all registers
including cpsr.
I've added tests with a core file and live process. Only checking for
fields that are always present to account for CPU variance.