LLVM supports DWARF 5 linetable extension to store source files inline
in DWARF. This is particularly useful for compiler-generated source
code. This implementation tries to materialize them as temporary files
lazily, so SBAPI clients don't need to be aware of them.
rdar://110926168
This patch fixes the SymbolFilePDBTests::TestMaxMatches(...) by making
it test what it was testing before, see comments in the test case for
details.
It also disables TestUniqueTypes4.py for now until we can debug or fix
why it isn't working.
This patch revives the effort to get this Phabricator patch into
upstream:
https://reviews.llvm.org/D137900
This patch was accepted before in Phabricator but I found some
-gsimple-template-names issues that are fixed in this patch.
A fixed up version of the description from the original patch starts
now.
This patch started off trying to fix Module::FindFirstType() as it
sometimes didn't work. The issue was the SymbolFile plug-ins didn't do
any filtering of the matching types they produced, and they only looked
up types using the type basename. This means if you have two types with
the same basename, your type lookup can fail when only looking up a
single type. We would ask the Module::FindFirstType to lookup "Foo::Bar"
and it would ask the symbol file to find only 1 type matching the
basename "Bar", and then we would filter out any matches that didn't
match "Foo::Bar". So if the SymbolFile found "Foo::Bar" first, then it
would work, but if it found "Baz::Bar" first, it would return only that
type and it would be filtered out.
Discovering this issue lead me to think of the patch Alex Langford did a
few months ago that was done for finding functions, where he allowed
SymbolFile objects to make sure something fully matched before parsing
the debug information into an AST type and other LLDB types. So this
patch aimed to allow type lookups to also be much more efficient.
As LLDB has been developed over the years, we added more ways to to type
lookups. These functions have lots of arguments. This patch aims to make
one API that needs to be implemented that serves all previous lookups:
- Find a single type
- Find all types
- Find types in a namespace
This patch introduces a `TypeQuery` class that contains all of the state
needed to perform the lookup which is powerful enough to perform all of
the type searches that used to be in our API. It contain a vector of
CompilerContext objects that can fully or partially specify the lookup
that needs to take place.
If you just want to lookup all types with a matching basename,
regardless of the containing context, you can specify just a single
CompilerContext entry that has a name and a CompilerContextKind mask of
CompilerContextKind::AnyType.
Or you can fully specify the exact context to use when doing lookups
like: CompilerContextKind::Namespace "std"
CompilerContextKind::Class "foo"
CompilerContextKind::Typedef "size_type"
This change expands on the clang modules code that already used a
vector<CompilerContext> items, but it modifies it to work with
expression type lookups which have contexts, or user lookups where users
query for types. The clang modules type lookup is still an option that
can be enabled on the `TypeQuery` objects.
This mirrors the most recent addition of type lookups that took a
vector<CompilerContext> that allowed lookups to happen for the
expression parser in certain places.
Prior to this we had the following APIs in Module:
```
void
Module::FindTypes(ConstString type_name, bool exact_match, size_t max_matches,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeList &types);
void
Module::FindTypes(llvm::ArrayRef<CompilerContext> pattern, LanguageSet languages,
llvm::DenseSet<lldb_private::SymbolFile *> &searched_symbol_files,
TypeMap &types);
void Module::FindTypesInNamespace(ConstString type_name,
const CompilerDeclContext &parent_decl_ctx,
size_t max_matches, TypeList &type_list);
```
The new Module API is much simpler. It gets rid of all three above
functions and replaces them with:
```
void FindTypes(const TypeQuery &query, TypeResults &results);
```
The `TypeQuery` class contains all of the needed settings:
- The vector<CompilerContext> that allow efficient lookups in the symbol
file classes since they can look at basename matches only realize fully
matching types. Before this any basename that matched was fully realized
only to be removed later by code outside of the SymbolFile layer which
could cause many types to be realized when they didn't need to.
- If the lookup is exact or not. If not exact, then the compiler context
must match the bottom most items that match the compiler context,
otherwise it must match exactly
- If the compiler context match is for clang modules or not. Clang
modules matches include a Module compiler context kind that allows types
to be matched only from certain modules and these matches are not needed
when d oing user type lookups.
- An optional list of languages to use to limit the search to only
certain languages
The `TypeResults` object contains all state required to do the lookup
and store the results:
- The max number of matches
- The set of SymbolFile objects that have already been searched
- The matching type list for any matches that are found
The benefits of this approach are:
- Simpler API, and only one API to implement in SymbolFile classes
- Replaces the FindTypesInNamespace that used a CompilerDeclContext as a
way to limit the search, but this only worked if the TypeSystem matched
the current symbol file's type system, so you couldn't use it to lookup
a type in another module
- Fixes a serious bug in our FindFirstType functions where if we were
searching for "foo::bar", and we found a "baz::bar" first, the basename
would match and we would only fetch 1 type using the basename, only to
drop it from the matching list and returning no results
Fix incorrect uses of LLDB_LOG_ERROR. The macro doesn't automatically
inject the error in the log message: it merely passes the error as the
first argument to formatv and therefore must be referenced with {0}.
Thanks to Nicholas Allegra for collecting a list of places where the
macro was misused.
rdar://111581655
Differential revision: https://reviews.llvm.org/D154530
This method just takes its ConstString parameter and gets a StringRef
out of it. Let's just pass in a StringRef directly.
This also cleans up some logic in the callers to be a little easier to
read and to avoid unnecessary ConstString creation.
Differential Revision: https://reviews.llvm.org/D153054
We have a handful of places in LLDB where we try to outsmart the logic
in Mangled to determine whether a string is mangled or not. There's at
least one place (*) where we are getting this wrong and causes a subtle
bug. The `cstring_is_mangled` is cheap enough that we should always rely
on it to determine whether a string is mangled or not.
(*) `ObjectFileMachO` assumes that a symbol that starts with a double
underscore (such as `__pthread_kill`) is mangled. That's mostly
harmless, until you use `function.name-without-args` in the frame
format. The formatter calls `Symbol::GetNameNoArguments()` which is a
wrapper around `Mangled::GetName(ePreferDemangledWithoutArguments)`. The
latter will first try using the appropriate language plugin to get the
demangled name without arguments, and if that fails, falls back to
returning the demangled name. Because we forced Mangled to treat the
symbol as a mangled name (even though it's not) there's no demangled
name. The result is that frames don't show any symbol at all.
Differential revision: https://reviews.llvm.org/D148846
**Summary**
In a program such as:
```
namespace A {
namespace B {
struct Bar {};
}
}
namespace B {
struct Foo {};
}
```
...LLDB would run into issues such as:
```
(lldb) expr ::B::Foo f
error: expression failed to parse:
error: <user expression 0>:1:6: no type named 'Foo' in namespace 'A::B'
::B::Foo f
~~~~~^
```
This is because the `SymbolFileDWARF::FindNamespace` implementation
will return *any* namespace it finds if the `parent_decl_ctx` provided
is empty. In `FindExternalVisibleDecls` we use this API to find the
namespace that symbol `B` refers to. If `A::B` happened to be the one
that `SymbolFileDWARF::FindNamespace` looked at first, we would try
to find `struct Foo` in `A::B`. Hence the error.
This patch proposes a new `SymbolFileDWARF::FindNamespace` API that
will only find a match for top-level namespaces, which is what
`FindExternalVisibleDecls` is attempting anyway; it just never
accounted for multiple namespaces of the same name.
**Testing**
* Added API test-case
Differential Revision: https://reviews.llvm.org/D147436
Ensure that the variant returned by `member->getValue()` has a value and
is not `Empty`. Failure to do so will trigger an assertion failure in
`llvm::pdb::Variant::getBitWidth()`. This can occur when the `static`
member is a forward declaration.
Differential Revision: https://reviews.llvm.org/D146536
Reviewed By: sgraenitz
This patch adds llvm::codeview::SourceLanguage entries, DWARF translations, and PDB source file extensions in LLVM and allow LLDB's PDB parsers to recognize them correctly.
The CV_CFL_LANG enum in the Visual Studio 2022 documentation https://learn.microsoft.com/en-us/visualstudio/debugger/debug-interface-access/cv-cfl-lang defines:
```
CV_CFL_OBJC = 0x11,
CV_CFL_OBJCXX = 0x12,
```
Since the initial commit in D24317, ObjC was emitted as C language and ObjC++ as Masm.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D146221
The old name of this function was confusing for me, when I started working on the PDB parser. The new name clearifies that the function adds file, line and column (typically referred as source info) and indicates that the information is stored in the provided decl parameter.
Reviewed By: DavidSpickett
Differential Revision: https://reviews.llvm.org/D146286
SymbolFiles should own Types by keeping them in their TypeList. This
patch privates the Type constructor to guarantee that every created Type
is kept in the SymbolFile's type list.
In preparation for eanbling 64bit support in LLDB switching to use llvm::formatv
instead of format MACROs.
Reviewed By: labath, JDevlieghere
Differential Revision: https://reviews.llvm.org/D139955
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
When a process gets restarted TypeSystem objects associated with it
may get deleted, and any CompilerType objects holding on to a
reference to that type system are a use-after-free in waiting. Because
of the SBAPI, we don't have tight control over where CompilerTypes go
and when they are used. This is particularly a problem in the Swift
plugin, where the scratch TypeSystem can be restarted while the
process is still running. The Swift plugin has a lock to prevent
abuse, but where there's a lock there can be bugs.
This patch changes CompilerType to store a std::weak_ptr<TypeSystem>.
Most of the std::weak_ptr<TypeSystem>* uglyness is hidden by
introducing a wrapper class CompilerType::WrappedTypeSystem that has a
dyn_cast_or_null() method. The only sites that need to know about the
weak pointer implementation detail are the ones that deal with
creating TypeSystems.
rdar://101505232
Differential Revision: https://reviews.llvm.org/D136650
I went over the output of the following mess of a command:
(ulimit -m 2000000; ulimit -v 2000000; git ls-files -z | parallel
--xargs -0 cat | aspell list --mode=none --ignore-case | grep -E
'^[A-Za-z][a-z]*$' | sort | uniq -c | sort -n | grep -vE '.{25}' |
aspell pipe -W3 | grep : | cut -d' ' -f2 | less)
and proceeded to spend a few days looking at it to find probable typos
and fixed a few hundred of them in all of the llvm project (note, the
ones I found are not anywhere near all of them, but it seems like a
good start).
Differential revision: https://reviews.llvm.org/D131122
This reverts commit 967df65a36.
This fixes test/Shell/SymbolFile/NativePDB/find-functions.cpp. When
looking up functions with the PDB plugins, if we are looking for a
full function name, we should use `GetName` to populate the `name`
field instead of `GetLookupName` since `GetName` has the more
complete information.
Context:
When setting a breakpoint by name, we invoke Module::FindFunctions to
find the function(s) in question. However, we use a Module::LookupInfo
to first process the user-provided name and figure out exactly what
we're looking for. When we actually perform the function lookup, we
search for the basename. After performing the search, we then filter out
the results using Module::LookupInfo::Prune. For example, given
a::b::foo we would first search for all instances of foo and then filter
out the results to just names that have a::b::foo in them. As one can
imagine, this involves a lot of debug info processing that we do not
necessarily need to be doing. Instead of doing one large post-processing
step after finding each instance of `foo`, we can filter them as we go
to save time.
Some numbers:
Debugging LLDB and placing a breakpoint on
llvm::itanium_demangle::StringView::begin without this change takes
approximately 70 seconds and resolves 31,920 DIEs. With this change,
placing the breakpoint takes around 30 seconds and resolves 8 DIEs.
Differential Revision: https://reviews.llvm.org/D129682
This diff introduces a new symbol on-demand which skips
loading a module's debug info unless explicitly asked on
demand. This provides significant performance improvement
for application with dynamic linking mode which has large
number of modules.
The feature can be turned on with:
"settings set symbols.load-on-demand true"
The feature works by creating a new SymbolFileOnDemand class for
each module which wraps the actual SymbolFIle subclass as member
variable. By default, most virtual methods on SymbolFileOnDemand are
skipped so that it looks like there is no debug info for that module.
But once the module's debug info is explicitly requested to
be enabled (in the conditions mentioned below) SymbolFileOnDemand
will allow all methods to pass through and forward to the actual SymbolFile
which would hydrate module's debug info on-demand.
In an internal benchmark, we are seeing more than 95% improvement
for a 3000 modules application.
Currently we are providing several ways to on demand hydrate
a module's debug info:
* Source line breakpoint: matching in supported files
* Stack trace: resolving symbol context for an address
* Symbolic breakpoint: symbol table match guided promotion
* Global variable: symbol table match guided promotion
In all above situations the module's debug info will be on-demand
parsed and indexed.
Some follow-ups for this feature:
* Add a command that allows users to load debug info explicitly while using a
new or existing command when this feature is enabled
* Add settings for "never load any of these executables in Symbols On Demand"
that takes a list of globs
* Add settings for "always load the the debug info for executables in Symbols
On Demand" that takes a list of globs
* Add a new column in "image list" that shows up by default when Symbols On
Demand is enable to show the status for each shlib like "not enabled for
this", "debug info off" and "debug info on" (with a single character to
short string, not the ones I just typed)
Differential Revision: https://reviews.llvm.org/D121631
We have using namespace llvm::dwarf in dwarf.h header globally. Replacing that
with a using namespace within lldb_private::dwarf and moving to a
using namespace lldb_private::dwarf in .cpp files and fully qualified names
in the few header files.
Differential Revision: https://reviews.llvm.org/D120836
D115300 added Rust as a new PDB language type.
This change allows LLDB to recognize the new language type.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D119044
Most of our code was including Log.h even though that is not where the
"lldb" log channel is defined (Log.h defines the generic logging
infrastructure). This worked because Log.h included Logging.h, even
though it should.
After the recent refactor, it became impossible the two files include
each other in this direction (the opposite inclusion is needed), so this
patch removes the workaround that was put in place and cleans up all
files to include the right thing. It also renames the file to LLDBLog to
better reflect its purpose.
Symbol table parsing has evolved over the years and many plug-ins contained duplicate code in the ObjectFile::GetSymtab() that used to be pure virtual. With this change, the "Symbtab *ObjectFile::GetSymtab()" is no longer virtual and will end up calling a new "void ObjectFile::ParseSymtab(Symtab &symtab)" pure virtual function to actually do the parsing. This helps centralize the code for parsing the symbol table and allows the ObjectFile base class to do all of the common work, like taking the necessary locks and creating the symbol table object itself. Plug-ins now just need to parse when they are asked to parse as the ParseSymtab function will only get called once.
This is a retry of the original patch https://reviews.llvm.org/D113965 which was reverted. There was a deadlock in the Manual DWARF indexing code during symbol preloading where the module was asked on the main thread to preload its symbols, and this would in turn cause the DWARF manual indexing to use a thread pool to index all of the compile units, and if there were relocations on the debug information sections, these threads could ask the ObjectFile to load section contents, which could cause a call to ObjectFileELF::RelocateSection() which would ask for the symbol table from the module and it would deadlock. We can't lock the module in ObjectFile::GetSymtab(), so the solution I am using is to use a llvm::once_flag to create the symbol table object once and then lock the Symtab object. Since all APIs on the symbol table use this lock, this will prevent anyone from using the symbol table before it is parsed and finalized and will avoid the deadlock I mentioned. ObjectFileELF::GetSymtab() was never locking the module lock before and would put off creating the symbol table until somewhere inside ObjectFileELF::GetSymtab(). Now we create it one time inside of the ObjectFile::GetSymtab() and immediately lock it which should be safe enough. This avoids the deadlocks and still provides safety.
Differential Revision: https://reviews.llvm.org/D114288
This reverts commit 951b107eed.
Buildbots were failing, there is a deadlock in /Users/gclayton/Documents/src/llvm/clean/llvm-project/lldb/test/Shell/SymbolFile/DWARF/DW_AT_range-DW_FORM_sec_offset.s when ELF files try to relocate things.
Symbol table parsing has evolved over the years and many plug-ins contained duplicate code in the ObjectFile::GetSymtab() that used to be pure virtual. With this change, the "Symbtab *ObjectFile::GetSymtab()" is no longer virtual and will end up calling a new "void ObjectFile::ParseSymtab(Symtab &symtab)" pure virtual function to actually do the parsing. This helps centralize the code for parsing the symbol table and allows the ObjectFile base class to do all of the common work, like taking the necessary locks and creating the symbol table object itself. Plug-ins now just need to parse when they are asked to parse as the ParseSymtab function will only get called once.
Differential Revision: https://reviews.llvm.org/D113965
This adds the `target dump typesystem'`command which dumps the TypeSystem of the
target itself (aka the 'scratch TypeSystem'). This is similar to `target modules
dump ast` which dumps the AST of lldb::Modules associated with a selected
target.
Unlike `target modules dump ast`, the new command is not a subcommand of `target
modules dump` as it's not touching the modules of a target at all. Also unlike
`target modules dump ast` I tried to keep the implementation language-neutral,
so this patch moves our Clang `Dump` to the `TypeSystem` interface so it will
also dump the state of any future/downstream scratch TypeSystems (e.g., Swift).
That's also why the command just refers to a 'typesystem' instead of an 'ast'
(which is only how Clang is necessarily modelling the internal TypeSystem
state).
The main motivation for this patch is that I need to write some tests that check
for duplicates in the ScratchTypeSystemClang of a target. There is currently no
way to check for this at the moment (beside measuring memory consumption of
course). It's probably also useful for debugging LLDB itself.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D111936
There is no reason why this function should be returning a ConstString.
While modifying these files, I also fixed several instances where
GetPluginName and GetPluginNameStatic were returning different strings.
I am not changing the return type of GetPluginNameStatic in this patch, as that
would necessitate additional changes, and this patch is big enough as it is.
Differential Revision: https://reviews.llvm.org/D111877
Trying to use the DIA SDK reader only to fail with "DIA SDK wasn't enabled"
isn't very useful. The native PDB reader is missing some stuff, but it's still
better than nothing.
Reduces number of lldb-check-shell test failures with LLVM_ENABLE_DIA_SDK=NO
from 27 to 15.
Differential Revision: https://reviews.llvm.org/D110172
In all these years, we haven't found a use for this function (it has
zero callers). Lets just remove the boilerplate.
Differential Revision: https://reviews.llvm.org/D109600