This commit renames 4 pattern rewriter API functions:
* `updateRootInPlace` -> `modifyOpInPlace`
* `startRootUpdate` -> `startOpModification`
* `finalizeRootUpdate` -> `finalizeOpModification`
* `cancelRootUpdate` -> `cancelOpModification`
The term "root" is a misnomer. The root is the op that a rewrite pattern
matches against
(https://mlir.llvm.org/docs/PatternRewriter/#root-operation-name-optional).
A rewriter must be notified of all in-place op modifications, not just
in-place modifications of the root
(https://mlir.llvm.org/docs/PatternRewriter/#pattern-rewriter). The old
function names were confusing and have contributed to various broken
rewrite patterns.
Note: The new function names use the term "modify" instead of "update"
for consistency with the `RewriterBase::Listener` terminology
(`notifyOperationModified`).
This functionality has been replaced by TypeCasters (see D151840)
depends on D154468
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D154469
This reverts commit d763c6e5e2.
Adds the patch by @hans from
https://github.com/llvm/llvm-project/issues/62719
This patch fixes the Windows build.
d763c6e5e2 reverted the reviews
D144509 [CMake] Bumps minimum version to 3.20.0.
This partly undoes D137724.
This change has been discussed on discourse
https://discourse.llvm.org/t/rfc-upgrading-llvms-minimum-required-cmake-version/66193
Note this does not remove work-arounds for older CMake versions, that
will be done in followup patches.
D150532 [OpenMP] Compile assembly files as ASM, not C
Since CMake 3.20, CMake explicitly passes "-x c" (or equivalent)
when compiling a file which has been set as having the language
C. This behaviour change only takes place if "cmake_minimum_required"
is set to 3.20 or newer, or if the policy CMP0119 is set to new.
Attempting to compile assembly files with "-x c" fails, however
this is workarounded in many cases, as OpenMP overrides this with
"-x assembler-with-cpp", however this is only added for non-Windows
targets.
Thus, after increasing cmake_minimum_required to 3.20, this breaks
compiling the GNU assembly for Windows targets; the GNU assembly is
used for ARM and AArch64 Windows targets when building with Clang.
This patch unbreaks that.
D150688 [cmake] Set CMP0091 to fix Windows builds after the cmake_minimum_required bump
The build uses other mechanism to select the runtime.
Fixes#62719
Reviewed By: #libc, Mordante
Differential Revision: https://reviews.llvm.org/D151344
This is adding a new interface (`BytecodeOpInterface`) to allow operations to
opt-in skipping conversion to attribute and serializing properties to native
bytecode.
The scheme relies on a new section where properties are stored in sequence
{ size, serialize_properties }, ...
The operations are storing the index of a properties, a table of offset is
built when loading the properties section the first time.
This is a re-commit of 837d1ce0dc which conflicted with another patch upgrading
the bytecode and the collision wasn't properly resolved before.
Differential Revision: https://reviews.llvm.org/D151065
This is an ongoing series of commits that are reformatting our
Python code.
Reformatting is done with `black`.
If you end up having problems merging this commit because you
have made changes to a python file, the best way to handle that
is to run git checkout --ours <yourfile> and then reformat it
with black.
If you run into any problems, post to discourse about it and
we will try to help.
RFC Thread below:
https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style
Differential Revision: https://reviews.llvm.org/D150782
This reverts commit ca5a12fd69
and follow-up fixes:
df34c288c407dc906883ab80ad0095837d1ce0dc
The first commit was incomplete and broken, I'll prepare a new version
later, in the meantime pull this work out of tree.
This is adding a new interface (`BytecodeOpInterface`) to allow operations to
opt-in skipping conversion to attribute and serializing properties to native
bytecode.
The scheme relies on a new section where properties are stored in sequence
{ size, serialize_properties }, ...
The operations are storing the index of a properties, a table of offset is
built when loading the properties section the first time.
Back-deployment to version prior to 4 are relying on getAttrDictionnary() which
we intend to deprecate and remove: that is putting a de-factor end-of-support
horizon for supporting deployments to version older than 4.
Differential Revision: https://reviews.llvm.org/D151065
This reverts commit 65429b9af6.
Broke several projects, see https://reviews.llvm.org/D144509#4347562 onwards.
Also reverts follow-up commit "[OpenMP] Compile assembly files as ASM, not C"
This reverts commit 4072c8aee4.
Also reverts fix attempt "[cmake] Set CMP0091 to fix Windows builds after the cmake_minimum_required bump"
This reverts commit 7d47dac5f8.
Implementation of Pass and Dialect Plugins that mirrors LLVM Pass Plugin
implementation from the new pass manager.
Currently the implementation only supports using the pass-pipeline option
for adding passes. This restriction is imposed by the `PassPipelineCLParser`
variable in mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:114 that loads the
parse options statically before parsing the cmd line args.
```
mlir-opt stanalone-plugin.mlir --load-dialect-plugin=lib/libStandalonePlugin.so --pass-pipeline="builtin.module(standalone-switch-bar-foo)"
```
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D147053
Implementation of Pass and Dialect Plugins that mirrors LLVM Pass Plugin implementation from the new pass manager.
Currently the implementation only supports using the pass-pipeline option for adding passes. This restriction is imposed by the `PassPipelineCLParser` variable in mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:114 that loads the parse options statically before parsing the cmd line args.
```
mlir-opt stanalone-plugin.mlir --load-dialect-plugin=lib/libStandalonePlugin.so --pass-pipeline="builtin.module(standalone-switch-bar-foo)"
```
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D147053
Implementation of Pass and Dialect Plugins that mirrors LLVM Pass Plugin implementation from the new pass manager.
Currently the implementation only supports using the pass-pipeline option for adding passes. This restriction is imposed by the `PassPipelineCLParser` variable in mlir/lib/Tools/mlir-opt/MlirOptMain.cpp:114 that loads the parse options statically before parsing the cmd line args.
```
mlir-opt stanalone-plugin.mlir --load-dialect-plugin=lib/libStandalonePlugin.so --pass-pipeline="builtin.module(standalone-switch-bar-foo)"
```
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D147053
Some build bots have not been updated to the new minimal CMake version.
Reverting for now and ping the buildbot owners.
This reverts commit 44c6b905f8.
This partly undoes D137724.
This change has been discussed on discourse
https://discourse.llvm.org/t/rfc-upgrading-llvms-minimum-required-cmake-version/66193
Note this does not remove work-arounds for older CMake versions, that
will be done in followup patches.
Reviewed By: mehdi_amini, MaskRay, ChuanqiXu, to268, thieta, tschuett, phosek, #libunwind, #libc_vendors, #libc, #libc_abi, sivachandra, philnik, zibi
Differential Revision: https://reviews.llvm.org/D144509
In addition to the component build, this enables the standalone example
to be build as part of a monolithic LLVM build by using the LLVM
external projects mechanism (`LLVM_EXTERNAL_PROJECTS`).
Reviewed By: stephenneuendorffer, stellaraccident
Differential Revision: https://reviews.llvm.org/D143718
This extends the standalone example to illustrate how to structure the
files needed to create own types.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D143715
This adds a '--no-implicit-module' option, which disables the insertion
of a top-level 'builtin.module' during parsing.
The translation APIs are also updated to take/return 'Operation*'
instead of 'ModuleOp', to allow other operation types to be used. To
simplify translations which are restricted to specific operation types,
'TranslateFromMLIRRegistration' has an overload which performs the
necessary cast and error checking.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D134237
This patch takes the first step towards a more principled modeling of undefined behavior in MLIR as discussed in the following discourse threads:
1. https://discourse.llvm.org/t/semantics-modeling-undefined-behavior-and-side-effects/4812
2. https://discourse.llvm.org/t/rfc-mark-tensor-dim-and-memref-dim-as-side-effecting/65729
This patch in particular does the following:
1. Introduces a ConditionallySpeculatable OpInterface that dynamically determines whether an Operation can be speculated.
2. Re-defines `NoSideEffect` to allow undefined behavior, making it necessary but not sufficient for speculation. Also renames it to `NoMemoryEffect`.
3. Makes LICM respect the above semantics.
4. Changes all ops tagged with `NoSideEffect` today to additionally implement ConditionallySpeculatable and mark themselves as always speculatable. This combined trait is named `Pure`. This makes this change NFC.
For out of tree dialects:
1. Replace `NoSideEffect` with `Pure` if the operation does not have any memory effects, undefined behavior or infinite loops.
2. Replace `NoSideEffect` with `NoSideEffect` otherwise.
The next steps in this process are (I'm proposing to do these in upcoming patches):
1. Update operations like `tensor.dim`, `memref.dim`, `scf.for`, `affine.for` to implement a correct hook for `ConditionallySpeculatable`. I'm also happy to update ops in other dialects if the respective dialect owners would like to and can give me some pointers.
2. Update other passes that speculate operations to consult `ConditionallySpeculatable` in addition to `NoMemoryEffect`. I could not find any other than LICM on a quick skim, but I could have missed some.
3. Add some documentation / FAQs detailing the differences between side effects, undefined behavior, speculatabilty.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D135505
Most dialects have already flipped to prefixed, and the intention to switch
has been telegraphed for a while.
Differential Revision: https://reviews.llvm.org/D133179
Now that C++17 is enabled in LLVM, a lot of the TODOs and patterns to emulate C++17 features can be eliminated.
The steps I have taken were essentially:
```
git grep C++17
git grep c++17
git grep "initializer_list<int>"
```
and address given comments and patterns.
Most of the changes boiled down to just using fold expressions rather than initializer_list.
While doing this I also discovered that Clang by default restricts the depth of fold expressions to 256 elements. I specifically hit this with `TestDialect` in `addOperations`. I opted to not replace it with fold expressions because of that but instead adding a comment documenting the issue.
If any other functions may be called with more than 256 elements in the future we might have to revert other parts as well.
I don't think this is a common occurence besides the `TestDialect` however. If need be, this could potentially be fixed via `mlir-tblgen` in the future.
Differential Revision: https://reviews.llvm.org/D131323
Since the very first commits, the Python and C MLIR APIs have had mis-placed registration/load functionality for dialects, extensions, etc. This was done pragmatically in order to get bootstrapped and then just grew in. Downstreams largely bypass and do their own thing by providing various APIs to register things they need. Meanwhile, the C++ APIs have stabilized around this and it would make sense to follow suit.
The thing we have observed in canonical usage by downstreams is that each downstream tends to have native entry points that configure its installation to its preferences with one-stop APIs. This patch leans in to this approach with `RegisterEverything.h` and `mlir._mlir_libs._mlirRegisterEverything` being the one-stop entry points for the "upstream packages". The `_mlir_libs.__init__.py` now allows customization of the environment and Context by adding "initialization modules" to the `_mlir_libs` package. If present, `_mlirRegisterEverything` is treated as such a module. Others can be added by downstreams by adding a `_site_initialize_{i}.py` module, where '{i}' is a number starting with zero. The number will be incremented and corresponding module loaded until one is not found. Initialization modules can:
* Perform load time customization to the global environment (i.e. registering passes, hooks, etc).
* Define a `register_dialects(registry: DialectRegistry)` function that can extend the `DialectRegistry` that will be used to bootstrap the `Context`.
* Define a `context_init_hook(context: Context)` function that will be added to a list of callbacks which will be invoked after dialect registration during `Context` initialization.
Note that the `MLIRPythonExtension.RegisterEverything` is not included by default when building a downstream (its corresponding behavior was prior). For downstreams which need the default MLIR initialization to take place, they must add this back in to their Python CMake build just like they add their own components (i.e. to `add_mlir_python_common_capi_library` and `add_mlir_python_modules`). It is perfectly valid to not do this, in which case, only the things explicitly depended on and initialized by downstreams will be built/packaged. If the downstream has not been set up for this, it is recommended to simply add this back for the time being and pay the build time/package size cost.
CMake changes:
* `MLIRCAPIRegistration` -> `MLIRCAPIRegisterEverything` (renamed to signify what it does and force an evaluation: a number of places were incidentally linking this very expensive target)
* `MLIRPythonSoure.Passes` removed (without replacement: just drop)
* `MLIRPythonExtension.AllPassesRegistration` removed (without replacement: just drop)
* `MLIRPythonExtension.Conversions` removed (without replacement: just drop)
* `MLIRPythonExtension.Transforms` removed (without replacement: just drop)
Header changes:
* `mlir-c/Registration.h` is deleted. Dialect registration functionality is now in `IR.h`. Registration of upstream features are in `mlir-c/RegisterEverything.h`. When updating MLIR and a couple of downstreams, I found that proper usage was commingled so required making a choice vs just blind S&R.
Python APIs removed:
* mlir.transforms and mlir.conversions (previously only had an __init__.py which indirectly triggered `mlirRegisterTransformsPasses()` and `mlirRegisterConversionPasses()` respectively). Downstream impact: Remove these imports if present (they now happen as part of default initialization).
* mlir._mlir_libs._all_passes_registration, mlir._mlir_libs._mlirTransforms, mlir._mlir_libs._mlirConversions. Downstream impact: None expected (these were internally used).
C-APIs changed:
* mlirRegisterAllDialects(MlirContext) now takes an MlirDialectRegistry instead. It also used to trigger loading of all dialects, which was already marked with a TODO to remove -- it no longer does, and for direct use, dialects must be explicitly loaded. Downstream impact: Direct C-API users must ensure that needed dialects are loaded or call `mlirContextLoadAllAvailableDialects(MlirContext)` to emulate the prior behavior. Also see the `ir.c` test case (e.g. ` mlirContextGetOrLoadDialect(ctx, mlirStringRefCreateFromCString("func"));`).
* mlirDialectHandle* APIs were moved from Registration.h (which now is restricted to just global/upstream registration) to IR.h, arguably where it should have been. Downstream impact: include correct header (likely already doing so).
C-APIs added:
* mlirContextLoadAllAvailableDialects(MlirContext): Corresponds to C++ API with the same purpose.
Python APIs added:
* mlir.ir.DialectRegistry: Mapping for an MlirDialectRegistry.
* mlir.ir.Context.append_dialect_registry(MlirDialectRegistry)
* mlir.ir.Context.load_all_available_dialects()
* mlir._mlir_libs._mlirAllRegistration: New native extension that exposes a `register_dialects(MlirDialectRegistry)` entry point and performs all upstream pass/conversion/transforms registration on init. In this first step, we eagerly load this as part of the __init__.py and use it to monkey patch the Context to emulate prior behavior.
* Type caster and capsule support for MlirDialectRegistry
This should make it possible to build downstream Python dialects that only depend on a subset of MLIR. See: https://github.com/llvm/llvm-project/issues/56037
Here is an example PR, minimally adapting IREE to these changes: https://github.com/iree-org/iree/pull/9638/files In this situation, IREE is opting to not link everything, since it is already configuring the Context to its liking. For projects that would just like to not think about it and pull in everything, add `MLIRPythonExtension.RegisterEverything` to the list of Python sources getting built, and the old behavior will continue.
Reviewed By: mehdi_amini, ftynse
Differential Revision: https://reviews.llvm.org/D128593
Marked all dialects that could be (reasonably) easily flipped to _Both
prefix. Updating the accessors to prefixed form will happen in follow
up, this was to flush out conflicts and to mark all dialects explicitly
as I plan to flip OpBase default to _Prefixed to avoid needing to
migrate new dialects.
Except for Standalone example which got flipped to _Prefixed.
Differential Revision: https://reviews.llvm.org/D128027
Since these are unused, I've removed them from the configuration, so that it can be easier to read and follow.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D125132
This allows for inferring the result types of operations in certain situations by using the type of
an operand. This commit allowed for automatically supporting type inference for many more
operations with no additional effort, e.g. nearly all Arithmetic operations now support
result type inferrence with no additional changes.
Differential Revision: https://reviews.llvm.org/D124581