Transform interfaces are implemented, direction or via extensions, in
libraries belonging to multiple other dialects. Those dialects don't
need to depend on the non-interface part of the transform dialect, which
includes the growing number of ops and transitive dependency footprint.
Split out the interfaces into a separate library. This in turn requires
flipping the dependency from the interface on the dialect that has crept
in because both co-existed in one library. The interface shouldn't
depend on the transform dialect either.
As a consequence of splitting, the capability of the interpreter to
automatically walk the payload IR to identify payload ops of a certain
kind based on the type used for the entry point symbol argument is
disabled. This is a good move by itself as it simplifies the interpreter
logic. This functionality can be trivially replaced by a
`transform.structured.match` operation.
This commit extends the DIDerivedTypeAttr with the `extraData` field.
For now, the type of it is limited to be a `DINodeAttr`, as extending
the debug metadata handling to support arbitrary metadata nodes does not
seem to be necessary so far.
Following the discussion from [this
thread](https://discourse.llvm.org/t/handling-cyclic-dependencies-in-debug-info/67526/11),
this PR adds support for recursive DITypes.
This PR adds:
1. DIRecursiveTypeAttrInterface: An interface that DITypeAttrs can
implement to indicate that it supports recursion. See full description
in code.
2. Importer & exporter support (The only DITypeAttr that implements the
interface is DICompositeTypeAttr, so the exporter is only implemented
for composites too. There will be two methods that each llvm DI type
that supports mutation needs to implement since there's nothing
general).
---------
Co-authored-by: Tobias Gysi <tobias.gysi@nextsilicon.com>
The base class llvm::ThreadPoolInterface will be renamed
llvm::ThreadPool in a subsequent commit.
This is a breaking change: clients who use to create a ThreadPool must
now create a DefaultThreadPool instead.
Expose the API for constructing and inspecting StructTypes from the LLVM
dialect. Separate constructor methods are used instead of overloads for
better readability, similarly to IntegerType.
…ct LevelType from LevelFormat and properties instead.
**Rationale**
We used to explicitly declare every possible combination between
`LevelFormat` and `LevelProperties`, and it now becomes difficult to
scale as more properties/level formats are going to be introduced.
1. Add python test for n out of m
2. Add more methods for python binding
3. Add verification for n:m and invalid encoding tests
4. Add e2e test for n:m
Previous PRs for n:m #80501#79935
When properties are not enabled in an operation, inherent attributes are
stored in the common dictionary with discardable attributes. However,
`getDiscardableAttrs` and `getDiscardableAttrDictionary` were returning
the entire dictionary, making the caller mistakenly believe that all
inherent attributes are discardable. Fix this by filtering out
attributes whose names are registered with the operation, i.e., inherent
attributes. This requires an API change so `getDiscardableAttrs` returns
a filter range.
This adds Python abstractions for the different handle types of the
transform dialect
The abstractions allow for straightforward chaining of transforms by
calling their member functions.
As an initial PR for this infrastructure, only a single transform is
included: `transform.structured.match`.
With a future `tile` transform abstraction an example of the usage is:
```Python
def script(module: OpHandle):
module.match_ops(MatchInterfaceEnum.TilingInterface).tile(tile_sizes=[32,32])
```
to generate the following IR:
```mlir
%0 = transform.structured.match interface{TilingInterface} in %arg0
%tiled_op, %loops = transform.structured.tile_using_for %0 [32, 32]
```
These abstractions are intended to enhance the usability and flexibility
of the transform dialect by providing an accessible interface that
allows for easy assembly of complex transformation chains.
The "Dim" prefix is a legacy left-over that no longer makes sense, since
we have a very strict "Dimension" vs. "Level" definition for sparse
tensor types and their storage.
The scalable dimension functionality was added to the vector type after
the bindings for it were defined, without the bindings being ever
updated. Fix that.
Enable passing in MlirAsmState optionally (allow for passing in null) to
allow using the more efficient print calling API. The existing print
behavior results in a new AsmState is implicitly created by walking the
parent op and renumbering values. This makes the cost more explicit and
avoidable (by reusing an AsmState).
This commit changes the LLVM dialect's CAPI pointer getters to drop
support for typed pointers. Typed pointers are deprecated and should no
longer be generated.
Fixes https://github.com/llvm/llvm-project/issues/69730 (also see
https://reviews.llvm.org/D155543).
There are two things outstanding (why I didn't land before):
1. add some C API tests for `mlirOperationWalk`;
2. potentially refactor how the invalidation in `run` works; the first
version of the code looked like this:
```cpp
if (invalidateOps) {
auto *context = op.getOperation().getContext().get();
MlirOperationWalkCallback invalidatingCallback =
[](MlirOperation op, void *userData) {
PyMlirContext *context =
static_cast<PyMlirContext *>(userData);
context->setOperationInvalid(op);
};
auto numRegions =
mlirOperationGetNumRegions(op.getOperation().get());
for (int i = 0; i < numRegions; ++i) {
MlirRegion region =
mlirOperationGetRegion(op.getOperation().get(), i);
for (MlirBlock block = mlirRegionGetFirstBlock(region);
!mlirBlockIsNull(block);
block = mlirBlockGetNextInRegion(block))
for (MlirOperation childOp =
mlirBlockGetFirstOperation(block);
!mlirOperationIsNull(childOp);
childOp = mlirOperationGetNextInBlock(childOp))
mlirOperationWalk(childOp, invalidatingCallback, context,
MlirWalkPostOrder);
}
}
```
This is verbose and ugly but it has the important benefit of not
executing `mlirOperationEqual(rootOp->get(), op)` for every op
underneath the root op.
Supposing there's no desire for the slightly more efficient but highly
convoluted approach, I can land this "posthaste".
But, since we have eyes on this now, any suggestions or approaches (or
needs/concerns) are welcome.
Updates:
1. Infer lvlToDim from dimToLvl
2. Add more tests for block sparsity
3. Finish TODOs related to lvlToDim, including adding lvlToDim to python
binding
Verification of lvlToDim that user provides will be implemented in the
next PR.
This is a follow-up to 8c2bff1ab9 which lazy-initialized the
diagnostic and removed the need to dynamically abandon() an
InFlightDiagnostic. This further simplifies the code to not needed to
return a reference to an InFlightDiagnostic and instead eagerly emit
errors.
Also use `emitError` as name instead of `getDiag` which seems more
explicit and in-line with the common usage.
This is part of the transition toward properly splitting the two groups.
This only introduces new C APIs, the Python bindings are unaffected. No
API is removed.
Note the new surface syntax allows for defining a dimToLvl and lvlToDim
map at once (where usually the latter can be inferred from the former,
but not always). This revision adds storage for the latter, together
with some intial boilerplate. The actual support (inference, validation,
printing, etc.) is still TBD of course.
Enable usage where capturing AsmState is good (e.g., avoiding creating AsmState over and over again when walking IR and printing).
This also only changes one C API to verify plumbing. But using the AsmState makes the cost more explicit than the flags interface (which hides the traversals and construction here) and also enables a more efficient usage C side.
Only construction and type casting are implemented. The method to create
is explicitly named "unsafe" and the documentation calls out what the
caller is responsible for. There really isn't a better way to do this
and retain the power-user feature this represents.
This will make it easy for callers to see issues with and fix up calls
to createTargetMachine after a future change to the params of
TargetMachine.
This matches other nearby enums.
For downstream users, this should be a fairly straightforward
replacement,
e.g. s/CodeGenOpt::Aggressive/CodeGenOptLevel::Aggressive
or s/CGFT_/CodeGenFileType::
Exposes the existing `get(ShapedType, StringRef, AsmResourceBlob)`
builder publicly (was protected) and adds a CAPI
`mlirUnmanagedDenseBlobResourceElementsAttrGet`.
While such a generic construction interface is a big help when it comes
to interop, it is also necessary for creating resources that don't have
a standard C type (i.e. f16, the f8s, etc).
Previously reviewed/approved as part of https://reviews.llvm.org/D157064
This revision avoids the registration of dialect extensions in Pass::getDependentDialects.
Such registration of extensions can be dangerous because `DialectRegistry::isSubsetOf` is
always guaranteed to return false for extensions (i.e. there is no mechanism to track
whether a lambda is already in the list of already registered extensions).
When the context is already in a multi-threaded mode, this is guaranteed to assert.
Arguably a more structured registration mechanism for extensions with a unique ExtensionID
could be envisioned in the future.
In the process of cleaning this up, multiple usage inconsistencies surfaced around the
registration of translation extensions that this revision also cleans up.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D157703
This patch adds the MLIR C bindings and the corresponding Python bindings of the AnyValueType of the transform dialect.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D157638