When creating a new block in (conversion) rewrite patterns,
`OpBuilder::createBlock` must be used. Otherwise, no
`notifyBlockInserted` notification is sent to the listener.
Note: The dialect conversion relies on listener notifications to keep
track of IR modifications. Creating blocks without the builder API can
lead to memory leaks during rollback.
Functions are always callable operations and thus every operation
implementing the `FunctionOpInterface` also implements the
`CallableOpInterface`. The only exception was the FuncOp in the toy
example. To make implementation of the `FunctionOpInterface` easier,
this commit lets `FunctionOpInterface` inherit from
`CallableOpInterface` and merges some of their methods. More precisely,
the `CallableOpInterface` has methods to get the argument and result
attributes and a method to get the result types of the callable region.
These methods are always implemented the same way as their analogues in
`FunctionOpInterface` and thus this commit moves all the argument and
result attribute handling methods to the callable interface as well as
the methods to get the argument and result types. The
`FuntionOpInterface` then does not have to declare them as well, but
just inherits them from the `CallableOpInterface`.
Adding the inheritance relation also required to move the
`FunctionOpInterface` from the IR directory to the Interfaces directory
since IR should not depend on Interfaces.
Reviewed By: jpienaar, springerm
Differential Revision: https://reviews.llvm.org/D157988
The current implementation is not very ergonomic or descriptive: It uses `std::optional<unsigned>` where `std::nullopt` represents the parent op and `unsigned` is the region number.
This doesn't give us any useful methods specific to region control flow and makes the code fragile to changes due to now taking the region number into account.
This patch introduces a new type called `RegionBranchPoint`, replacing all uses of `std::optional<unsigned>` in the interface. It can be implicitly constructed from a region or a `RegionSuccessor`, can be compared with a region to check whether the branch point is branching from the parent, adds `isParent` to check whether we are coming from a parent op and adds `RegionSuccessor::parent` as a descriptive way to indicate branching from the parent.
Differential Revision: https://reviews.llvm.org/D159116
The `RegionBranchOpInterface` had a few fundamental issues caused by the API design of `getSuccessorRegions`.
It always required passing values for the `operands` parameter. This is problematic as the operands parameter actually changes meaning depending on which predecessor `index` is referring to. If coming from a region, you'd have to find a `RegionBranchTerminatorOpInterface` in that region, get its operand count, and then create a `SmallVector` of that size.
This is not only inconvenient, but also error-prone, which has lead to a bug in the implementation of a previously existing `getSuccessorRegions` overload.
Additionally, this made the method dual-use, trying to serve two different use-cases: 1) Trying to determine possible control flow edges between regions and 2) Trying to determine the region being branched to based on constant operands.
This patch fixes these issues by changing the interface methods and adding new ones:
* The `operands` argument of `getSuccessorRegions` has been removed. The method is now only responsible for returning possible control flow edges between regions.
* An optional `getEntrySuccessorRegions` method has been added. This is used to determine which regions are branched to from the parent op based on constant operands of the parent op. By default, it calls `getSuccessorRegions`. This is analogous to `getSuccessorForOperands` from `BranchOpInterface`.
* Add `getSuccessorRegions` to `RegionBranchTerminatorOpInterface`. This is used to get the possible successors of the terminator based on constant operands. By default, it calls the containing `RegionBranchOpInterface`s `getSuccessorRegions` method.
* `getSuccessorEntryOperands` was renamed to `getEntrySuccessorOperands` for consistency.
Differential Revision: https://reviews.llvm.org/D157506
This renaming started with the native ODS support for properties, this is completing it.
A mass automated textual rename seems safe for most codebases.
Drop also the ods prefix to keep the accessors the same as they were before
this change:
properties.odsOperandSegmentSizes
reverts back to:
properties.operandSegementSizes
The ODS prefix was creating divergence between all the places and make it harder to
be consistent.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D157173
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Context:
* https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…"
* Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This follows a previous patch that updated calls
`op.cast<T>()-> cast<T>(op)`. However some cases could not handle an
unprefixed `cast` call due to occurrences of variables named cast, or
occurring inside of class definitions which would resolve to the method.
All C++ files that did not work automatically with `cast<T>()` are
updated here to `llvm::cast` and similar with the intention that they
can be easily updated after the methods are removed through a
find-replace.
See https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
for the clang-tidy check that is used and then update printed
occurrences of the function to include `llvm::` before.
One can then run the following:
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-export-fixes /tmp/cast/casts.yaml mlir/*\
-header-filter=mlir/ -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
```
Differential Revision: https://reviews.llvm.org/D150348
The patch adds operations to `BlockAndValueMapping` and renames it to `IRMapping`. When operations are cloned, old operations are mapped to the cloned operations. This allows mapping from an operation to a cloned operation. Example:
```
Operation *opWithRegion = ...
Operation *opInsideRegion = &opWithRegion->front().front();
IRMapping map
Operation *newOpWithRegion = opWithRegion->clone(map);
Operation *newOpInsideRegion = map.lookupOrNull(opInsideRegion);
```
Migration instructions:
All includes to `mlir/IR/BlockAndValueMapping.h` should be replaced with `mlir/IR/IRMapping.h`. All uses of `BlockAndValueMapping` need to be renamed to `IRMapping`.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D139665
This is part of an effort to migrate from llvm::Optional to
std::optional. This patch changes the way mlir-tblgen generates .inc
files, and modifies tests and documentation appropriately. It is a "no
compromises" patch, and doesn't leave the user with an unpleasant mix of
llvm::Optional and std::optional.
A non-trivial change has been made to ControlFlowInterfaces to split one
constructor into two, relating to a build failure on Windows.
See also: https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Signed-off-by: Ramkumar Ramachandra <r@artagnon.com>
Differential Revision: https://reviews.llvm.org/D138934
Reland D139447, D139471 With flang actually working
- FunctionOpInterface: make get/setFunctionType interface methods
This patch removes the concept of a `function_type`-named type attribute
as a requirement for implementors of FunctionOpInterface. Instead, this
type should be provided through two interface methods, `getFunctionType`
and `setFunctionTypeAttr` (*Attr because functions may use different
concrete function types), which should be automatically implemented by
ODS for ops that define a `$function_type` attribute.
This also allows FunctionOpInterface to materialize function types if
they don't carry them in an attribute, for example.
Importantly, all the function "helper" still accept an attribute name to
use in parsing and printing functions, for example.
- FunctionOpInterface: arg and result attrs dispatch to interface
This patch removes the `arg_attrs` and `res_attrs` named attributes as a
requirement for FunctionOpInterface and replaces them with interface
methods for the getters, setters, and removers of the relevent
attributes. This allows operations to use their own storage for the
argument and result attributes.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D139736
This patch removes the `arg_attrs` and `res_attrs` named attributes as a
requirement for FunctionOpInterface and replaces them with interface
methods for the getters, setters, and removers of the relevent
attributes. This allows operations to use their own storage for the
argument and result attributes.
Depends on D139471
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D139472
This patch removes the concept of a `function_type`-named type attribute
as a requirement for implementors of FunctionOpInterface. Instead, this
type should be provided through two interface methods, `getFunctionType`
and `setFunctionTypeAttr` (*Attr because functions may use different
concrete function types), which should be automatically implemented by
ODS for ops that define a `$function_type` attribute.
This also allows FunctionOpInterface to materialize function types if
they don't carry them in an attribute, for example.
Importantly, all the function "helper" still accept an attribute name to
use in parsing and printing functions, for example.
Reviewed By: rriddle, lattner
Differential Revision: https://reviews.llvm.org/D139447
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Add Async Function to the Async Dialect
Today `async.execute` operation semantics requires attached region to be executed in a thread managed by the runtime, and always returns an `!async.token` result. We need to model async functions that are not necessarily executed in a runtime-managed threads, but eventually lowered to llvm coroutines.
Example:
```
async.func @foo(%arg0: !async.value<f32>) -> !async.token {
%0 = async.await %arg0: !async.value<f32>
"do_something_with_f32"(%0)
return
}
```
If `arg0` is available this function will be executed in the caller thread. If it's not available it will be suspended and resumed later later on a thread managed by the async runtime. Currently this is not representable with `async.execute` operations.
The longer term goal is to make async dialect more like https://github.com/lewissbaker/cppcoro to be able to represent structured host concurrency in MLIR.
(1) Add async.func, async.call, and async.return operations in Async Dialect
Reviewed By: ezhulenev, rriddle
Differential Revision: https://reviews.llvm.org/D137189
This allows for incrementally updating the old API usages without
needing to update everything at once. These will be left on Both
for a little bit and then flipped to prefixed when all APIs have been
updated.
Differential Revision: https://reviews.llvm.org/D134386
This reland includes changes to the Python bindings.
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.
Depends on D131801
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D131803
Switch variadic operand and result segment size attributes to use the
dense i32 array. Dense integer arrays were introduced primarily to
represent index lists. They are a better fit for segment sizes than
dense elements attrs.
Depends on D131738
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D131702
Ops that implement `RegionBranchOpInterface` are allowed to indicate that they can branch back to themselves in `getSuccessorRegions`, but there is no API that allows them to specify the forwarded operands. This patch enables that by changing `getSuccessorEntryOperands` to accept `None`.
Fixes#54928
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D127239
There are a lot of cases where we accidentally ignored the result of some
parsing hook. Mark ParseResult as LLVM_NODISCARD just like ParseResult is.
This exposed some stuff to clean up, so do.
Differential Revision: https://reviews.llvm.org/D125549
MLIR has a common pattern for "arguments" that uses syntax
like `%x : i32 {attrs} loc("sourceloc")` which is implemented
in adhoc ways throughout the codebase. The approach this uses
is verbose (because it is implemented with parallel arrays) and
inconsistent (e.g. lots of things drop source location info).
Solve this by introducing OpAsmParser::Argument and make addRegion
(which sets up BlockArguments for the region) take it. Convert the
world to propagating this down. This means that we correctly
capture and propagate source location information in a lot more
cases (e.g. see the affine.for testcase example), and it also
simplifies much code.
Differential Revision: https://reviews.llvm.org/D124649
When Location tracking support for block arguments was added, we
discussed various approaches to threading support for this through
function-like argument parsing. At the time, we added a parallel array
of locations that could hold this. It turns out that that approach was
verbose and error prone, roughly no one adopted it.
This patch takes a different approach, adding an optional source
locator to the UnresolvedOperand class. This fits much more naturally
into the standard structure we use for representing locators, and gives
all the function like dialects locator support for free (e.g. see the
test adding an example for the LLVM dialect).
Differential Revision: https://reviews.llvm.org/D124188
I am not sure about the meaning of Type in the name (was it meant be interpreted as Kind?), and given the importance and meaning of Type in the context of MLIR, its probably better to rename it. Given the comment in the source code, the suggestion in the GitHub issue and the final discussions in the review, this patch renames the OperandType to UnresolvedOperand.
Fixes https://github.com/llvm/llvm-project/issues/54446
Differential Revision: https://reviews.llvm.org/D122142
In this CL, update the function name of verifier according to the
behavior. If a verifier needs to access the region then it'll be updated
to `verifyRegions`.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D120373
RegionBranchOpInterface and BranchOpInterface are allowed to make implicit type conversions along control-flow edges. In effect, this adds an interface method, `areTypesCompatible`, to both interfaces, which should return whether the types of corresponding successor operands and block arguments are compatible. Users of the interfaces, here on forth, must be aware that types may mismatch, although current users (in MLIR core), are not affected by this change. By default, type equality is used.
`async.execute` already has unequal types along control-flow edges (`!async.value<f32>` vs. `f32`), but it opted out of calling `RegionBranchOpInterface::verifyTypes` in its verifier. That method has now been removed and `RegionBranchOpInterface` will verify types along control edges by default in its verifier.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D120790
BlockArguments gained the ability to have locations attached a while ago, but they
have always been optional. This goes against the core tenant of MLIR where location
information is a requirement, so this commit updates the API to require locations.
Fixes#53279
Differential Revision: https://reviews.llvm.org/D117633
Previously the optional locations of function arguments were dropped in
`parseFunctionArgumentList`. This CL adds another output argument to the
function through which they are now returned. The values are then plumbed
through as an array of optional locations in the various places.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D117604
The leading space that is always printed at the beginning of regions is not consistent with other parts of the printing API. Moreover, this leading space can lead to undesirable assembly formats:
```
attr-dict-with-keyword $region
```
Prints as:
```
// Two spaces between `}` and `{`
attributes {foo} { ... }
```
Moreover, the leading space results in the odd generic op format:
```
"test.op"() ( {...}) : () -> ()
```
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D117411
The majority of dialects reimplement the same boilerplate over and over,
switching the default makes it for better discoverability and make it simpler
to implement new dialects.
Differential Revision: https://reviews.llvm.org/D117524
`getNumRegionInvocations` was originally added for the async reference counting, but turned out to be not useful, and currently is not used anywhere (couldn't find any uses in public github repos). Removing dead code.
Reviewed By: Mogball, mehdi_amini
Differential Revision: https://reviews.llvm.org/D117347
This decouples the printing/parsing from the "context" in which the parsing occurs.
This will allow to invoke these methods directly using an OpAsmParser/OpAsmPrinter.
Differential Revision: https://reviews.llvm.org/D113637
This breaking change requires to remove printing the mnemonic in the print()
method on Type/Attribute classes.
This makes it consistent with the parsing code which alread handles the
mnemonic outside of the parsing method.
This likely won't break the build for anyone, but tests will start
failing for dialects downstream. The fix is trivial and look like
going from:
void emitc::OpaqueType::print(DialectAsmPrinter &printer) const {
printer << "opaque<\"";
to:
void emitc::OpaqueAttr::print(DialectAsmPrinter &printer) const {
printer << "<\"";
Reviewed By: rriddle, aartbik
Differential Revision: https://reviews.llvm.org/D113334
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Recommit 4b32f8bac4 after fixing a dependency.
Differential Revision: https://reviews.llvm.org/D110796
The former is redundant because the later carries it as part of
its builder. Add a getContext() helper method to DialectAsmParser
to make this more convenient, and stop passing the context around
explicitly. This simplifies ODS generated parser hooks for attrs
and types.
This resolves PR51985
Differential Revision: https://reviews.llvm.org/D110796
Lots of custom ops have hand-rolled comma-delimited parsing loops, as does
the MLIR parser itself. Provides a standard interface for doing this that
is less error prone and less boilerplate.
While here, extend Delimiter to support <> and {} delimited sequences as
well (I have a use for <> in CIRCT specifically).
Differential Revision: https://reviews.llvm.org/D110122
This aligns the printer with the parser contract: the operation isn't part of the user-controllable part of the syntax.
Differential Revision: https://reviews.llvm.org/D108804
Currently TFRT does not support top-level coroutines, so this functionality will allow to have a single blocking await at the top level until TFRT implements the necessary functionality.
Reviewed By: ezhulenev
Differential Revision: https://reviews.llvm.org/D106730