The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.
This is step 31/n towards merging instructions and statements. The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.
PiperOrigin-RevId: 227540453
runOnCFG/MLFunction override locations. Passes that care can handle this
filtering if they choose. Also, eliminate one needless difference between
CFG/ML functions in the parser.
This is step 30/n towards merging instructions and statements.
PiperOrigin-RevId: 227515912
have a designator. This improves diagnostics and merges handling between CFG
and ML functions more. This also eliminates hard coded parser knowledge of
terminator keywords, allowing dialects to define their own terminators.
PiperOrigin-RevId: 227239398
the function signature, giving them common functionality to ml functions. This
is a strictly additive patch that adds new capability without changing behavior
in a significant way (other than a few diagnostic cleanups). A subsequent
patch will change the printer to use this behavior, which will require updating
a ton of testcases. :)
This exposes the fact that we need to make a grammar change for block
arguments, as is tracked by b/122119779
This is step 23/n towards merging instructions and statements, and one of the
first steps towards eliminating the "cfg vs ml" distinction at a syntax and
semantic level.
PiperOrigin-RevId: 227228342
by ~80 lines. This causes a slight change to diagnostics, but
is otherwise behavior preserving.
This is step 22/n towards merging instructions and statements, MFC.
PiperOrigin-RevId: 227187857
consistent and moving the using declarations over. Hopefully this is the last
truly massive patch in this refactoring.
This is step 21/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227178245
The last major renaming is Statement -> Instruction, which is why Statement and
Stmt still appears in various places.
This is step 19/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227163082
StmtResult -> InstResult, StmtOperand -> InstOperand, and remove the old names.
This is step 17/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227121537
Sometimes we have to get the raw value of the FloatAttr to invoke APIs from
non-MLIR libraries (i.e. in the tpu_ops.inc and convert_tensor.cc files). Using
`FloatAttr::getValue().convertToFloat()` and
`FloatAttr::getValue().convertToDouble()` is not safe because interally they
checke the semantics of the APFloat in the attribute, and the semantics is not
always specified (the default value is f64 then convertToFloat will fail) or
inferred incorrectly (for example, using 1.0 instead of 1.f for IEEEFloat).
Calling these convert methods without knowing the semantics can usually crash
the compiler.
This new method converts the value of a FloatAttr to double even if it loses
precision. Currently this method can be used to read in f32 data from arrays.
PiperOrigin-RevId: 227076616
FuncBuilder class. Also rename SSAValue.cpp to Value.cpp
This is step 12/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227067644
is the new base of the SSA value hierarchy. This CL also standardizes all the
nomenclature and comments to use 'Value' where appropriate. This also eliminates a large number of cast<MLValue>(x)'s, which is very soothing.
This is step 11/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227064624
This *only* changes the internal data structures, it does not affect the user visible syntax or structure of MLIR code. Function gets new "isCFG()" sorts of predicates as a transitional measure.
This patch is gross in a number of ways, largely in an effort to reduce the amount of mechanical churn in one go. It introduces a bunch of using decls to keep the old names alive for now, and a bunch of stuff needs to be renamed.
This is step 10/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227044402
BlockArgument arguments of the entry block instead. This makes MLFunctions and
CFGFunctions work more similarly.
This is step 7/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 226966975
from it. This is necessary progress to squaring away the parent relationship
that a StmtBlock has with its enclosing if/for/fn, and makes room for functions
to have more than one block in the future. This also removes IfClause and ForStmtBody.
This is step 5/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 226936541
StmtBlock. This is more consistent with IfStmt and also conceptually makes
more sense - a forstmt "isn't" its body, it contains its body.
This is step 1/N towards merging BasicBlock and StmtBlock. This is required
because in the new regime StmtBlock will have a use list (just like BasicBlock
does) of operands, and ForStmt already has a use list for its induction
variable.
This is a mechanical patch, NFC.
PiperOrigin-RevId: 226684158
Existing implementation always uses 64 bits to store floating point values in
DenseElementsAttr. This was due to FloatAttrs always a `double` for storage
independently of the actual type. Recent commits added support for FloatAttrs
with the proper f32 type and floating semantics and changed the bitwidth
reporting on FloatType.
Use the existing infrastructure for densely storing 16 and 32-bit values in
DenseElementsAttr storage to store f16 and f32 values. Move floating semantics
definition to the FloatType level. Properly support f16 / IEEEhalf semantics
at the FloatAttr level and in the builder.
Note that bf16 is still stored as a 64-bit value with IEEEdouble semantics
because APFloat does not have first-class support for bf16 types.
PiperOrigin-RevId: 225981289
As MLIR moves towards dialect-specific types, a generic Type::getBitWidth does
not make sense for all of them. Even with the current type system, the bit
width is not defined (and causes the method in question to abort) for all
TensorFlow types.
This commit restricts the bit width definition to primitive standard types that
have a number of bits appearing verbatim in their type, i.e., integers and
floats. As a side effect, it delegates the decision on the bit width of the
`index` to the backends. Existing backends currently hardcode it to 64 bits.
The Type::getBitWidth method is replaced by Type::getIntOrFloatBitWidth that
only applies to integers and floats. The call sites are updated to use the new
method, where applicable, or rewritten so as not rely on it. Incidentally,
this fixes a utility method that did not account for memrefs being allowed to
have vectors as element types in the size computation.
As an observation, several places in the code use Type in places where a more
specific type could be used instead. Some of those are fixed by this commit.
PiperOrigin-RevId: 225844792
Store FloatAttr using more appropriate fltSemantics (mostly fixing up F32/F64 storage, F16/BF16 pending). Previously F32 type was used incorrectly for double (the storage was double). Also add query method that returns fltSemantics for IEEE fp types and use that to verify that the APfloat given matches the type:
* FloatAttr created using APFloat is verified that the semantics of the type and APFloat matches;
* FloatAttr created using double has the APFloat created to match the semantics of the type;
Change parsing of tensor negative splat element to pass in the element type expected. Misc other changes to account for the storage type matching the attribute.
PiperOrigin-RevId: 225821834
This simplifies call-sites returning true after emitting an error. After the
conversion, dropped braces around single statement blocks as that seems more
common.
Also, switched to emitError method instead of emitting Error kind using the
emitDiagnostic method.
TESTED with existing unit tests
PiperOrigin-RevId: 224527868
- add optional stride arguments for DmaStartOp
- add DmaStartOp::verify(), and missing test cases for DMA op's in
test/IR/memory-ops.mlir.
PiperOrigin-RevId: 224232466
The checks for `isa<IndexType>() || isa<IntegerType>()` and
`isa<IndexType>() || isa<IntegerType>() || isa<FloatType>()`
are frequently used, so it's useful to have some helper
methods for them.
PiperOrigin-RevId: 224133596
We do some limited renaming here but define an alias for OperationInst so that a follow up cl can solely perform the large scale renaming.
PiperOrigin-RevId: 221726963
* Optionally attach the type of integer and floating point attributes to the attributes, this allows restricting a int/float to specific width.
- Currently this allows suffixing int/float constant with type [this might be revised in future].
- Default to i64 and f32 if not specified.
* For index types the APInt width used is 64.
* Change callers to request a specific attribute type.
* Store iN type with APInt of width N.
* This change does not handle the folding of constants of different types (e.g., doing int type promotions to support constant folding i3 and i32), and instead restricts the constant folding to only operate on the same types.
PiperOrigin-RevId: 221722699
Array attributes can nested and function attributes can appear anywhere at that
level. They should be remapped to point to the generated CFGFunction after
ML-to-CFG conversion, similarly to plain function attributes. Extract the
nested attribute remapping functionality from the Parser to Utils. Extract out
the remapping function for individual Functions from the module remapping
function. Use these new functions in the ML-to-CFG conversion pass and in the
parser.
PiperOrigin-RevId: 221510997
Similarly to other types, introduce "get" and "getChecked" static member
functions for IntegerType. The latter emits errors to the error handler
registered with the MLIR context and returns a null type for the caller to
handle errors gracefully. This deduplicates type consistency checks between
the parser and the builder. Update the parser to call IntegerType::getChecked
for error reporting instead of the builder that would simply assert.
This CL completes the type system error emission refactoring: the parser now
only emits syntax-related errors for types while type factory systems may emit
type consistency errors.
PiperOrigin-RevId: 221165207
Branch instruction arguments were defined and used inconsistently across
different instructions, in both the spec and the implementation. In
particular, conditional and unconditional branch instructions were using
different syntax in the implementation. This led to the IR we produce not
being accepted by the parser. Update the printer to use common syntax: `(`
list-of-SSA-uses `:` list-of-types `)`. The motivation for choosing this
syntax as opposed to the one in the spec, `(` list-of-SSA-uses `)` `:`
list-of-types is double-fold. First, it is tricky to differentiate the label
of the false branch from the type while parsing conditional branches (which is
what apparently motivated the implementation to diverge from the spec in the
first place). Second, the ongoing convergence between terminator instructions
and other operations prompts for consistency between their operand list syntax.
After this change, the only remaining difference between the two is the use of
parentheses. Update the comment of the parser that did not correspond to the
code. Remove the unused isParenthesized argument from parseSSAUseAndTypeList.
Update the spec accordingly. Note that the examples in the spec were _not_
using the EBNF defined a couple of lines above them, but were using the current
syntax. Add a supplementary example of a branch to a basic block with multiple
arguments.
PiperOrigin-RevId: 221162655
Change the storage type to APInt from int64_t for IntegerAttr (following the change to APFloat storage in FloatAttr). Effectively a direct change from int64_t to 64-bit APInt throughout (the bitwidth hardcoded). This change also adds a getInt convenience method to IntegerAttr and replaces previous getValue calls with getInt calls.
While this changes updates the storage type, it does not update all constant folding calls.
PiperOrigin-RevId: 221082788
This was unsafe after cr/219372163 and seems to be the only such case in the
change. All other usage of dyn_cast are either handling the nullptr or are
implicitly safe. For example, they are being extracted from operand or result
SSAValue.
TESTED with unit test
PiperOrigin-RevId: 220905942
This CL introduces the following related changes:
- move tensor element type validity checking to a static member function
TensorType::isValidElementType
- introduce get/getChecked similarly to MemRefType, where the checked function
emits errors and returns nullptrs;
- remove duplicate element type validity checking from the parser and rely on
the type constructor to emit errors instead.
PiperOrigin-RevId: 220694831
This CL introduces the following related changes:
- factor out element type validity checking to a static member function
VectorType::isValidElementType;
- introduce get/getChecked similarly to MemRefType, where the checked function
emits errors and returns nullptrs;
- remove duplicate element type validity checking from the parser and rely on
the type constructor to emit errors instead.
PiperOrigin-RevId: 220693828
Value type abstraction for locations differ from others in that a Location can NOT be null. NOTE: dyn_cast returns an Optional<T>.
PiperOrigin-RevId: 220682078
It is unclear why vector types were not allowed to have "index" as element
type. Index values are integers, although of unknown bit width, and should
behave as such. Vectors of integers are allowed and so are tensors of indices
(for indirection purposes), it is more consistent to also have vectors of
indices.
PiperOrigin-RevId: 220630123
Arithmetic and comparison instructions are necessary to implement, e.g.,
control flow when lowering MLFunctions to CFGFunctions. (While it is possible
to replace some of the arithmetics by affine_apply instructions for loop
bounds, it is still necessary for loop bounds checking, steps, if-conditions,
non-trivial memref subscripts, etc.) Furthermore, working with indirect
accesses in, e.g., lookup tables for large embeddings, may require operating on
tensors of indexes. For example, the equivalents to C code "LUT[Index[i]]" or
"ResultIndex[i] = i + j" where i, j are loop induction variables require the
arithmetics on indices as well as the possibility to operate on tensors
thereof. Allow arithmetic and comparison operations to apply to index types by
declaring them integer-like. Allow tensors whose element type is index for
indirection purposes.
The absence of vectors with "index" element type is explicitly tested, but the
only justification for this restriction in the CL introducing the test is
"because we don't need them". Do NOT enable vectors of index types, although
it makes vector and tensor types inconsistent with respect to allowed element
types.
PiperOrigin-RevId: 220614055
Introduce a new public static member function, MemRefType::getChecked, intended
for the users that want detailed error messages to be emitted during MemRefType
construction and can gracefully handle these errors. This function takes a
Location of the "MemRef" token if known. The parser is one user of getChecked
that has location information, it outputs errors as compiler diagnostics.
Other users may pass in an instance of UnknownLoc and still have error messages
emitted. Compiler-internal users not expecting the MemRefType construction to
fail should call MemRefType::get, which now aborts on failure with a generic
message.
Both "getChecked" and "get" call to a static free function that does actual
construction with well-formedness checks, optionally emits errors and returns
nullptr on failure.
The location information passed to getChecked has voluntarily coarse precision.
The error messages are intended for compiler engineers and do not justify
heavier API than a single location. The text of the messages can be written so
that it pinpoints the actual location of the error within a MemRef declaration.
PiperOrigin-RevId: 219765902
This is done by changing Type to be a POD interface around an underlying pointer storage and adding in-class support for isa/dyn_cast/cast.
PiperOrigin-RevId: 219372163
This check was being performed in AllocOp::verify. However it is not specific
to AllocOp and should apply to all MemRef type declarations. At the same time,
the unique *Type factory functions in MLIRContext do not have access to
location information necessary to properly emit diagnostics. Emit the error in
Parser where the location information is available. Keep the error emission in
AllocOp for the cases of programmatically-constructed, e.g. through Builders,
IR with a note. Once we decided on the diagnostic infrastructure in type
construction system, the type-related checks should be removed from specific
Ops.
Correct several parser test cases that have been using affine maps of
mismatching dimensionality.
This CL prepares for an upcoming change that will drop trivial identity affine
map compositions during MemRefType construction. In that case, the
dimensionality mismatch error must be emitted before dropping the identity map,
i.e. during the type construction at the latest and before "verify" being
called.
PiperOrigin-RevId: 218844127
This is done by changing Attribute to be a POD interface around an underlying pointer storage and adding in-class support for isa/dyn_cast/cast.
PiperOrigin-RevId: 218764173
- Introduce Fourier-Motzkin variable elimination to eliminate a dimension from
a system of linear equalities/inequalities. Update isEmpty to use this.
Since FM is only exact on rational/real spaces, an emptiness check based on
this is guaranteed to be exact whenever it says the underlying set is empty;
if it says, it's not empty, there may still be no integer points in it.
Also, supports a version that computes "dark shadows".
- Test this by checking for "always false" conditionals in if statements.
- Unique IntegerSet's that are small (few constraints, few variables). This
basically means the canonical empty set and other small sets that are
likely commonly used get uniqued; allows checking for the canonical empty set
by pointer. IntegerSet::kUniquingThreshold gives the threshold constraint size
for uniqui'ing.
- rename simplify-affine-expr -> simplify-affine-structures
Other cleanup
- IntegerSet::numConstraints, AffineMap::numResults are no longer needed;
remove them.
- add copy assignment operators for AffineMap, IntegerSet.
- rename Invalid() -> Null() on AffineExpr, AffineMap, IntegerSet
- Misc cleanup for FlatAffineConstraints API
PiperOrigin-RevId: 218690456
For some of the constant vector / tesor, if the compiler doesn't need to
interpret their elements content, they can be stored in this class to save the
serialize / deserialize cost.
syntax:
`opaque<` tensor-type `,` opaque-string `>`
opaque-string ::= `0x` [0-9a-fA-F]*
PiperOrigin-RevId: 218399426
a step forward because now every AbstractOperation knows which Dialect it is
associated with, enabling things in the future like "constant folding
hooks" which will be important for layering. This is also a bit nicer on
the registration side of things.
PiperOrigin-RevId: 218104230
We should be able to represent arbitrary precision Float-point values inside
the IR, so compiler optimizations, such as constant folding can be done
independently on the compiling platform.
This CL also added a new field, AttrValueGetter, to the Attr class definition
for TableGen. This field is used to customize which mlir::Attr getter method to
get the defined PrimitiveType.
PiperOrigin-RevId: 218034983