This commit extends the DIDerivedTypeAttr with the `extraData` field.
For now, the type of it is limited to be a `DINodeAttr`, as extending
the debug metadata handling to support arbitrary metadata nodes does not
seem to be necessary so far.
Following the discussion from [this
thread](https://discourse.llvm.org/t/handling-cyclic-dependencies-in-debug-info/67526/11),
this PR adds support for recursive DITypes.
This PR adds:
1. DIRecursiveTypeAttrInterface: An interface that DITypeAttrs can
implement to indicate that it supports recursion. See full description
in code.
2. Importer & exporter support (The only DITypeAttr that implements the
interface is DICompositeTypeAttr, so the exporter is only implemented
for composites too. There will be two methods that each llvm DI type
that supports mutation needs to implement since there's nothing
general).
---------
Co-authored-by: Tobias Gysi <tobias.gysi@nextsilicon.com>
`%ld` specifier is defined to work on values of type `long`. The parameter given to `fprintf` is of type `intptr_t` whose actual underlying integer type is unspecified. On Unix systems it happens to commonly be `long` but on 64-bit Windows it is defined as `long long`.
The cross-platform way to print a `intptr_t` is to use `PRIdPTR` which expands to the correct format specifier for `intptr_t`. This avoids any undefined behaviour and compiler warnings.
Expose the API for constructing and inspecting StructTypes from the LLVM
dialect. Separate constructor methods are used instead of overloads for
better readability, similarly to IntegerType.
llvm-project/mlir/test/CAPI/sparse_tensor.c:50:43:
error: format specifies type 'unsigned long long' but the argument has type 'MlirSparseTensorLevelType' (aka 'unsigned long') [-Werror,-Wformat]
fprintf(stderr, "level_type: %llu\n", lvlTypes[l]);
~~~~ ^~~~~~~~~~~
%lu
1 error generated.
llvm-project/mlir/test/CAPI/sparse_tensor.c:50:42:
error: format specifies type 'unsigned long' but the argument has type 'MlirSparseTensorLevelType' (aka 'unsigned long long') [-Werror,-Wformat]
50 | fprintf(stderr, "level_type: %lu\n", lvlTypes[l]);
| ~~~ ^~~~~~~~~~~
| %llu
1 error generated.
1. C++ enum is set through enum class LevelType : uint_64.
2. C enum is set through typedef uint_64 level_type. It is due to the
limitations in Windows build: setting enum width to ui64 is not
supported in C.
The "Dim" prefix is a legacy left-over that no longer makes sense, since
we have a very strict "Dimension" vs. "Level" definition for sparse
tensor types and their storage.
The scalable dimension functionality was added to the vector type after
the bindings for it were defined, without the bindings being ever
updated. Fix that.
Enable passing in MlirAsmState optionally (allow for passing in null) to
allow using the more efficient print calling API. The existing print
behavior results in a new AsmState is implicitly created by walking the
parent op and renumbering values. This makes the cost more explicit and
avoidable (by reusing an AsmState).
This commit changes the LLVM dialect's CAPI pointer getters to drop
support for typed pointers. Typed pointers are deprecated and should no
longer be generated.
Fixes https://github.com/llvm/llvm-project/issues/69730 (also see
https://reviews.llvm.org/D155543).
There are two things outstanding (why I didn't land before):
1. add some C API tests for `mlirOperationWalk`;
2. potentially refactor how the invalidation in `run` works; the first
version of the code looked like this:
```cpp
if (invalidateOps) {
auto *context = op.getOperation().getContext().get();
MlirOperationWalkCallback invalidatingCallback =
[](MlirOperation op, void *userData) {
PyMlirContext *context =
static_cast<PyMlirContext *>(userData);
context->setOperationInvalid(op);
};
auto numRegions =
mlirOperationGetNumRegions(op.getOperation().get());
for (int i = 0; i < numRegions; ++i) {
MlirRegion region =
mlirOperationGetRegion(op.getOperation().get(), i);
for (MlirBlock block = mlirRegionGetFirstBlock(region);
!mlirBlockIsNull(block);
block = mlirBlockGetNextInRegion(block))
for (MlirOperation childOp =
mlirBlockGetFirstOperation(block);
!mlirOperationIsNull(childOp);
childOp = mlirOperationGetNextInBlock(childOp))
mlirOperationWalk(childOp, invalidatingCallback, context,
MlirWalkPostOrder);
}
}
```
This is verbose and ugly but it has the important benefit of not
executing `mlirOperationEqual(rootOp->get(), op)` for every op
underneath the root op.
Supposing there's no desire for the slightly more efficient but highly
convoluted approach, I can land this "posthaste".
But, since we have eyes on this now, any suggestions or approaches (or
needs/concerns) are welcome.
Updates:
1. Infer lvlToDim from dimToLvl
2. Add more tests for block sparsity
3. Finish TODOs related to lvlToDim, including adding lvlToDim to python
binding
Verification of lvlToDim that user provides will be implemented in the
next PR.
This is part of the transition toward properly splitting the two groups.
This only introduces new C APIs, the Python bindings are unaffected. No
API is removed.
Note the new surface syntax allows for defining a dimToLvl and lvlToDim
map at once (where usually the latter can be inferred from the former,
but not always). This revision adds storage for the latter, together
with some intial boilerplate. The actual support (inference, validation,
printing, etc.) is still TBD of course.
Enable usage where capturing AsmState is good (e.g., avoiding creating AsmState over and over again when walking IR and printing).
This also only changes one C API to verify plumbing. But using the AsmState makes the cost more explicit than the flags interface (which hides the traversals and construction here) and also enables a more efficient usage C side.
Only construction and type casting are implemented. The method to create
is explicitly named "unsafe" and the documentation calls out what the
caller is responsible for. There really isn't a better way to do this
and retain the power-user feature this represents.
Exposes the existing `get(ShapedType, StringRef, AsmResourceBlob)`
builder publicly (was protected) and adds a CAPI
`mlirUnmanagedDenseBlobResourceElementsAttrGet`.
While such a generic construction interface is a big help when it comes
to interop, it is also necessary for creating resources that don't have
a standard C type (i.e. f16, the f8s, etc).
Previously reviewed/approved as part of https://reviews.llvm.org/D157064
It's recommended practice that people calling MLIR in a loop
pre-create a LLVM ThreadPool and a dialect registry and then
explicitly pass those into a MLIRContext for each compilation.
However, the C API does not expose the functions needed to follow this
recommendation from a project that isn't calling MLIR's C++ dilectly.
Add the necessary APIs to mlir-c, including a wrapper around LLVM's
ThreadPool struct (so as to avoid having to amend or re-export parts
of the LLVM API).
Reviewed By: makslevental
Differential Revision: https://reviews.llvm.org/D153593
Promised interfaces allow for a dialect to "promise" the implementation of an interface, i.e.
declare that it supports an interface, but have the interface defined in an extension in a library
separate from the dialect itself. A promised interface is powerful in that it alerts the user when
the interface is attempted to be used (e.g. via cast/dyn_cast/etc.) and the implementation has
not yet been provided. This makes the system much more robust against misconfiguration,
and ensures that we do not lose the benefit we currently have of defining the interface in
the dialect library.
Differential Revision: https://reviews.llvm.org/D120368
We've observed that the MLIR Jit Engine fails when the `omp` dialect is used due to a failure to register OpenMP-related translations. This small patch addresses this issue.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D151577
This is a major step along the way towards the new STEA design. While a great deal of this patch is simple renaming, there are several significant changes as well. I've done my best to ensure that this patch retains the previous behavior and error-conditions, even though those are at odds with the eventual intended semantics of the `dimToLvl` mapping. Since the majority of the compiler does not yet support non-permutations, I've also added explicit assertions in places that previously had implicitly assumed it was dealing with permutations.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D151505
This is an ongoing series of commits that are reformatting our
Python code.
Reformatting is done with `black`.
If you end up having problems merging this commit because you
have made changes to a python file, the best way to handle that
is to run git checkout --ours <yourfile> and then reformat it
with black.
If you run into any problems, post to discourse about it and
we will try to help.
RFC Thread below:
https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style
Differential Revision: https://reviews.llvm.org/D150782
This commit is part of the migration of towards the new STEA syntax/design. In particular, this commit includes the following changes:
* Renaming compiler-internal functions/methods:
* `SparseTensorEncodingAttr::{getDimLevelType => getLvlTypes}`
* `Merger::{getDimLevelType => getLvlType}` (for consistency)
* `sparse_tensor::{getDimLevelType => buildLevelType}` (to help reduce confusion vs actual getter methods)
* Renaming external facets to match:
* the STEA parser and printer
* the C and Python bindings
* PyTACO
However, the actual renaming of the `DimLevelType` itself (along with all the "dlt" names) will be handled in a separate commit.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D150330
The old "pointer/index" names often cause confusion since these names clash with names of unrelated things in MLIR; so this change rectifies this by changing everything to use "position/coordinate" terminology instead.
In addition to the basic terminology, there have also been various conventions for making certain distinctions like: (1) the overall storage for coordinates in the sparse-tensor, vs the particular collection of coordinates of a given element; and (2) particular coordinates given as a `Value` or `TypedValue<MemRefType>`, vs particular coordinates given as `ValueRange` or similar. I have striven to maintain these distinctions
as follows:
* "p/c" are used for individual position/coordinate values, when there is no risk of confusion. (Just like we use "d/l" to abbreviate "dim/lvl".)
* "pos/crd" are used for individual position/coordinate values, when a longer name is helpful to avoid ambiguity or to form compound names (e.g., "parentPos"). (Just like we use "dim/lvl" when we need a longer form of "d/l".)
I have also used these forms for a handful of compound names where the old name had been using a three-letter form previously, even though a longer form would be more appropriate. I've avoided renaming these to use a longer form purely for expediency sake, since changing them would require a cascade of other renamings. They should be updated to follow the new naming scheme, but that can be done in future patches.
* "coords" is used for the complete collection of crd values associated with a single element. In the runtime library this includes both `std::vector` and raw pointer representations. In the compiler, this is used specifically for buffer variables with C++ type `Value`, `TypedValue<MemRefType>`, etc.
The bare form "coords" is discouraged, since it fails to make the dim/lvl distinction; so the compound names "dimCoords/lvlCoords" should be used instead. (Though there may exist a rare few cases where is is appropriate to be intentionally ambiguous about what coordinate-space the coords live in; in which case the bare "coords" is appropriate.)
There is seldom the need for the pos variant of this notion. In most circumstances we use the term "cursor", since the same buffer is reused for a 'moving' pos-collection.
* "dcvs/lcvs" is used in the compiler as the `ValueRange` analogue of "dimCoords/lvlCoords". (The "vs" stands for "`Value`s".) I haven't found the need for it, but "pvs" would be the obvious name for a pos-`ValueRange`.
The old "ind"-vs-"ivs" naming scheme does not seem to have been sustained in more recent code, which instead prefers other mnemonics (e.g., adding "Buf" to the end of the names for `TypeValue<MemRefType>`). I have cleaned up a lot of these to follow the "coords"-vs-"cvs" naming scheme, though haven't done an exhaustive cleanup.
* "positions/coordinates" are used for larger collections of pos/crd values; in particular, these are used when referring to the complete sparse-tensor storage components.
I also prefer to use these unabbreviated names in the documentation, unless there is some specific reason why using the abbreviated forms helps resolve ambiguity.
In addition to making this terminology change, this change also does some cleanup along the way:
* correcting the dim/lvl terminology in certain places.
* adding `const` when it requires no other code changes.
* miscellaneous cleanup that was entailed in order to make the proper distinctions. Most of these are in CodegenUtils.{h,cpp}
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D144773
`mlirPassManagerRun` is currently restricted to running on
`builtin.module` ops, but this restriction doesn't exist on the C++
side. This renames it to `mlirPassManagerRunOnOp` and updates it to take
`MlirOperation` instead of `MlirModule`.
Depends on D143352
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D143354
Update the FuncToLLVM pass to use the generated constructors and
the generated pass option struct. The hand written constructor
got out of sync after some refactorings. Using a generated constructor
and options struct ensures the everything remains in sync.
Reviewed By: zero9178
This reverts commit 39da46826d
and relands commit 771d9c05af
which was originally reverted due to
https://lab.llvm.org/buildbot#builders/61/builds/39694
Differential Revision: https://reviews.llvm.org/D143733
Update the FuncToLLVM pass to use the generated constructors and
the generated pass option struct. The hand written constructor
got out of sync after some refactorings. Using a generated constructor
and options struct ensures the everything remains in sync.
Reviewed By: zero9178
Differential Revision: https://reviews.llvm.org/D143733