Composite pass allows to run sequence of passes in the loop until fixed
point or maximum number of iterations is reached. The usual candidates
are canonicalize+CSE as canonicalize can open more opportunities for CSE
and vice-versa.
Rename listener callback names:
* `notifyOperationRemoved` -> `notifyOperationErased`
* `notifyBlockRemoved` -> `notifyBlockErased`
The current callback names are misnomers. The callbacks are triggered
when an operation/block is erased, not when it is removed (unlinked).
E.g.:
```c++
/// Notify the listener that the specified operation is about to be erased.
/// At this point, the operation has zero uses.
///
/// Note: This notification is not triggered when unlinking an operation.
virtual void notifyOperationErased(Operation *op) {}
```
This change is in preparation of adding listener support to the dialect
conversion. The dialect conversion internally unlinks IR before erasing
it at a later point of time. There is an important difference between
"remove" and "erase". Lister callback names should be accurate to avoid
confusion.
The pattern rewriter documentation states that "*all* IR mutations [...]
are required to be performed via the `PatternRewriter`." This commit
adds two functions that were missing from the rewriter API:
`moveOpBefore` and `moveOpAfter`.
After an operation was moved, the `notifyOperationInserted` callback is
triggered. This allows listeners such as the greedy pattern rewrite
driver to react to IR changes.
This commit narrows the discrepancy between the kind of IR modification
that can be performed and the kind of IR modifications that can be
listened to.
Make it so that PDL in pattern rewrites can be optionally disabled.
PDL is still enabled by default and not optional bazel. So this should
be a NOP for most folks, while enabling other to disable.
This only works with tests disabled. With tests enabled this still
compiles but tests fail as there is no lit config to disable tests that
depend on PDL rewrites yet.
Make it so that PDL in pattern rewrites can be optionally disabled.
PDL is still enabled by default and not optional bazel. So this should
be a NOP for most folks, while enabling other to disable.
This is piped through mlir-tblgen invocation and that could be
changed/avoided by splitting up the passes file instead.
This only works with tests disabled. With tests enabled this still
compiles but tests fail as there is no lit config to disable tests that
depend on PDL rewrites yet.
Follow up to the discussion from #75258, and serves as an alternate
solution for #74670.
Set the location to Unknown for deduplicated / moved / materialized
constants by OperationFolder. This makes sure that the folded constants
don't end up with an arbitrary location of one of the original ops that
became it, and that hoisted ops don't confuse the stepping order.
If the loop bound is not initialized, the analysis crashed, as it only checked for nullity. Also checking for initialization fixes the issue.
Signed-off-by: Victor Perez <victor.perez@codeplay.com>
Co-authored-by: Tsang, Whitney <whitney.tsang@intel.com>
The pass tried to fold in reverse-post-order, but it cause an issue
when a parent is folded before the chilren as they will still be
present in the worklist.
Use reverse-preorder instead here.
Fixes#64089
This is an ongoing series of commits that are reformatting our
Python code.
Reformatting is done with `black`.
If you end up having problems merging this commit because you
have made changes to a python file, the best way to handle that
is to run git checkout --ours <yourfile> and then reformat it
with black.
If you run into any problems, post to discourse about it and
we will try to help.
RFC Thread below:
https://discourse.llvm.org/t/rfc-document-and-standardize-python-code-style
Differential Revision: https://reviews.llvm.org/D150782
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.
Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.
Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.
Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443
Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.
Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
additional check:
https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
them to a pure state.
4. Some changes have been deleted for the following reasons:
- Some files had a variable also named cast
- Some files had not included a header file that defines the cast
functions
- Some files are definitions of the classes that have the casting
methods, so the code still refers to the method instead of the
function without adding a prefix or removing the method declaration
at the same time.
```
ninja -C $BUILD_DIR clang-tidy
run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
-header-filter=mlir/ mlir/* -fix
rm -rf $BUILD_DIR/tools/mlir/**/*.inc
git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
mlir/lib/**/IR/\
mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
mlir/test/lib/Dialect/Test/TestTypes.cpp\
mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
mlir/test/lib/Dialect/Test/TestAttributes.cpp\
mlir/unittests/TableGen/EnumsGenTest.cpp\
mlir/test/python/lib/PythonTestCAPI.cpp\
mlir/include/mlir/IR/
```
Differential Revision: https://reviews.llvm.org/D150123
The utility functions takes a region and makes it isolated from above
by appending to the entry block arguments that represent the captured
values and replacing all uses of the captured values within the region
with the newly added arguments. The captures values are returned.
The utility function also takes an optional callback that allows
cloning operations that define the captured values into the region
during the process of making it isolated from above. The cloned value
is no longer a captured values. The operands of the operation are then
captured values. This is done transitively allow cloning of a DAG of
operations into the region based on the callback.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D148684
The constructor of `OperationFolder` takes a listener. Therefore, the remaining API should not take any builder/rewriters. This could lead to double notifications in case a listener is attached to the builder/rewriter.
As an internal cleanup, `OperationFolder` now has an `IRRewriter` instead of a `RewriterBase::Listener`. In most cases, `OperationFolder` no longer has to notify/deal with listeners. This is done by the rewriter.
Differential Revision: https://reviews.llvm.org/D146134
Remove the IR modification callbacks from `OperationFolder`. Instead, an optional `RewriterBase::Listener` can be specified.
* `processGeneratedConstants` => `notifyOperationCreated`
* `preReplaceAction` => `notifyOperationReplaced`
This simplifies the GreedyPatternRewriterDriver because we no longer need special handling for IR modifications due to op folding.
A folded operation is now enqueued on the GreedyPatternRewriteDriver's worklist if it was modified in-place. (There may be new patterns that apply after folding.)
Also fixes a bug in `TestOpInPlaceFold::fold`. The folder could previously be applied over and over and did not return a "null" OpFoldResult if the IR was not modified. (This is similar to a pattern that returns `success` without modifying IR; it can trigger an infinite loop in the GreedyPatternRewriteDriver.)
Differential Revision: https://reviews.llvm.org/D144463
The patch adds operations to `BlockAndValueMapping` and renames it to `IRMapping`. When operations are cloned, old operations are mapped to the cloned operations. This allows mapping from an operation to a cloned operation. Example:
```
Operation *opWithRegion = ...
Operation *opInsideRegion = &opWithRegion->front().front();
IRMapping map
Operation *newOpWithRegion = opWithRegion->clone(map);
Operation *newOpInsideRegion = map.lookupOrNull(opInsideRegion);
```
Migration instructions:
All includes to `mlir/IR/BlockAndValueMapping.h` should be replaced with `mlir/IR/IRMapping.h`. All uses of `BlockAndValueMapping` need to be renamed to `IRMapping`.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D139665
When all operands or results are variadic, zero values is a perfectly valid behavior
to expect, and we shouldn't force the user to provide values in this case. For example,
when creating a call or a return operation we often don't want/need to provide return
values.
Differential Revision: https://reviews.llvm.org/D133721
Up until now PDL(L) has not supported dialect conversion because we had no
way of remapping values or integrating with type conversions. This commit
rectifies that by adding a new "pattern configuration" concept to PDL. This
essentially allows for attaching external configurations to patterns, which
can hook into pattern events (for now just the scope of a rewrite, but we
could also pass configs to native rewrites as well). This allows for injecting
the type converter into the conversion pattern rewriter.
Differential Revision: https://reviews.llvm.org/D133142
This change allows analyzing ops from different block, in particular when used in programs that have `cf` branches.
Differential Revision: https://reviews.llvm.org/D135644
Currently, for sparse analyses, we always store a `Optional<ValueT>` in each lattice element. When it's `None`, we consider the lattice element as `uninitialized`.
However:
* Not all lattices have an `uninitialized` state. For example, `Executable` and `PredecessorState` have default values so they are always initialized.
* In dense analyses, we don't have the concept of an `uninitialized` state.
Given these inconsistencies, this patch removes `Lattice::isUninitialized()`. Individual analysis states are now default-constructed. If the default state of an analysis can be considered as "uninitialized" then this analysis should implement the following logic:
* Special join rule: `join(uninitialized, any) == any`.
* Special bail out logic: if any of the input states is uninitialized, exit the transfer function early.
Depends On D132086
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D132800
This change add a helper function for computing a topological sorting of a list of ops. E.g. this can be useful in transforms where a subset of ops should be cloned without dominance errors.
The analysis reuses the existing implementation in TopologicalSortUtils.cpp.
Differential Revision: https://reviews.llvm.org/D131669
Added a commutativity utility pattern and a function to populate it. The pattern sorts the operands of an op in ascending order of the "key" associated with each operand iff the op is commutative. This sorting is stable.
The function is intended to be used inside passes to simplify the matching of commutative operations. After the application of the above-mentioned pattern, since the commutative operands now have a deterministic order in which they occur in an op, the matching of large DAGs becomes much simpler, i.e., requires much less number of checks to be written by a user in her/his pattern matching function.
The "key" associated with an operand is the list of the "AncestorKeys" associated with the ancestors of this operand, in a breadth-first order.
The operand of any op is produced by a set of ops and block arguments. Each of these ops and block arguments is called an "ancestor" of this operand.
Now, the "AncestorKey" associated with:
1. A block argument is `{type: BLOCK_ARGUMENT, opName: ""}`.
2. A non-constant-like op, for example, `arith.addi`, is `{type: NON_CONSTANT_OP, opName: "arith.addi"}`.
3. A constant-like op, for example, `arith.constant`, is `{type: CONSTANT_OP, opName: "arith.constant"}`.
So, if an operand, say `A`, was produced as follows:
```
`<block argument>` `<block argument>`
\ /
\ /
`arith.subi` `arith.constant`
\ /
`arith.addi`
|
returns `A`
```
Then, the block arguments and operations present in the backward slice of `A`, in the breadth-first order are:
`arith.addi`, `arith.subi`, `arith.constant`, `<block argument>`, and `<block argument>`.
Thus, the "key" associated with operand `A` is:
```
{
{type: NON_CONSTANT_OP, opName: "arith.addi"},
{type: NON_CONSTANT_OP, opName: "arith.subi"},
{type: CONSTANT_OP, opName: "arith.constant"},
{type: BLOCK_ARGUMENT, opName: ""},
{type: BLOCK_ARGUMENT, opName: ""}
}
```
Now, if "keyA" is the key associated with operand `A` and "keyB" is the key associated with operand `B`, then:
"keyA" < "keyB" iff:
1. In the first unequal pair of corresponding AncestorKeys, the AncestorKey in operand `A` is smaller, or,
2. Both the AncestorKeys in every pair are the same and the size of operand `A`'s "key" is smaller.
AncestorKeys of type `BLOCK_ARGUMENT` are considered the smallest, those of type `CONSTANT_OP`, the largest, and `NON_CONSTANT_OP` types come in between. Within the types `NON_CONSTANT_OP` and `CONSTANT_OP`, the smaller ones are the ones with smaller op names (lexicographically).
---
Some examples of such a sorting:
Assume that the sorting is being applied to `foo.commutative`, which is a commutative op.
Example 1:
> %1 = foo.const 0
> %2 = foo.mul <block argument>, <block argument>
> %3 = foo.commutative %1, %2
Here,
1. The key associated with %1 is:
```
{
{CONSTANT_OP, "foo.const"}
}
```
2. The key associated with %2 is:
```
{
{NON_CONSTANT_OP, "foo.mul"},
{BLOCK_ARGUMENT, ""},
{BLOCK_ARGUMENT, ""}
}
```
The key of %2 < the key of %1
Thus, the sorted `foo.commutative` is:
> %3 = foo.commutative %2, %1
Example 2:
> %1 = foo.const 0
> %2 = foo.mul <block argument>, <block argument>
> %3 = foo.mul %2, %1
> %4 = foo.add %2, %1
> %5 = foo.commutative %1, %2, %3, %4
Here,
1. The key associated with %1 is:
```
{
{CONSTANT_OP, "foo.const"}
}
```
2. The key associated with %2 is:
```
{
{NON_CONSTANT_OP, "foo.mul"},
{BLOCK_ARGUMENT, ""}
}
```
3. The key associated with %3 is:
```
{
{NON_CONSTANT_OP, "foo.mul"},
{NON_CONSTANT_OP, "foo.mul"},
{CONSTANT_OP, "foo.const"},
{BLOCK_ARGUMENT, ""},
{BLOCK_ARGUMENT, ""}
}
```
4. The key associated with %4 is:
```
{
{NON_CONSTANT_OP, "foo.add"},
{NON_CONSTANT_OP, "foo.mul"},
{CONSTANT_OP, "foo.const"},
{BLOCK_ARGUMENT, ""},
{BLOCK_ARGUMENT, ""}
}
```
Thus, the sorted `foo.commutative` is:
> %5 = foo.commutative %4, %3, %2, %1
Signed-off-by: Srishti Srivastava <srishti.srivastava@polymagelabs.com>
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D124750
Integer range inference has been swapped to the new framework. The integer value range lattices automatically updates the corresponding constant value on update.
Depends on D127173
Reviewed By: krzysz00, rriddle
Differential Revision: https://reviews.llvm.org/D128866
This commit defines a dataflow analysis for integer ranges, which
uses a newly-added InferIntRangeInterface to compute the lower and
upper bounds on the results of an operation from the bounds on the
arguments. The range inference is a flow-insensitive dataflow analysis
that can be used to simplify code, such as by statically identifying
bounds checks that cannot fail in order to eliminate them.
The InferIntRangeInterface has one method, inferResultRanges(), which
takes a vector of inferred ranges for each argument to an op
implementing the interface and a callback allowing the implementation
to define the ranges for each result. These ranges are stored as
ConstantIntRanges, which hold the lower and upper bounds for a
value. Bounds are tracked separately for the signed and unsigned
interpretations of a value, which ensures that the impact of
arithmetic overflows is correctly tracked during the analysis.
The commit also adds a -test-int-range-inference pass to test the
analysis until it is integrated into SCCP or otherwise exposed.
Finally, this commit fixes some bugs relating to the handling of
region iteration arguments and terminators in the data flow analysis
framework.
Depends on D124020
Depends on D124021
Reviewed By: rriddle, Mogball
Differential Revision: https://reviews.llvm.org/D124023
This commit restructures how TypeID is implemented to ideally avoid
the current problems related to shared libraries. This is done by changing
the "implicit" fallback path to use the name of the type, instead of using
a static template variable (which breaks shared libraries). The major downside to this
is that it adds some additional initialization costs for the implicit path. Given the
use of type names for uniqueness in the fallback, we also no longer allow types
defined in anonymous namespaces to have an implicit TypeID. To simplify defining
an ID for these classes, a new `MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID` macro
was added to allow for explicitly defining a TypeID directly on an internal class.
To help identify when types are using the fallback, `-debug-only=typeid` can be
used to log which types are using implicit ids.
This change generally only requires changes to the test passes, which are all defined
in anonymous namespaces, and thus can't use the fallback any longer.
Differential Revision: https://reviews.llvm.org/D122775
(This was a TODO from the initial patch).
The control-flow sink utility accepts a callback that is used to sink an operation into a region.
The `moveIntoRegion` is called on the same operation and region that return true for `shouldMoveIntoRegion`.
The callback must preserve the dominance of the operation within the region. In the default control-flow
sink implementation, this is moving the operation to the start of the entry block.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D122445
A lot of test passes are currently anchored on FuncOp, but this
dependency
is generally just historical. A majority of these test passes can run on
any operation, or can operate on a specific interface
(FunctionOpInterface/SymbolOpInterface).
This allows for greatly reducing the API dependency on FuncOp, which
is slated to be moved out of the Builtin dialect.
Differential Revision: https://reviews.llvm.org/D121191
The last remaining operations in the standard dialect all revolve around
FuncOp/function related constructs. This patch simply handles the initial
renaming (which by itself is already huge), but there are a large number
of cleanups unlocked/necessary afterwards:
* Removing a bunch of unnecessary dependencies on Func
* Cleaning up the From/ToStandard conversion passes
* Preparing for the move of FuncOp to the Func dialect
See the discussion at https://discourse.llvm.org/t/standard-dialect-the-final-chapter/6061
Differential Revision: https://reviews.llvm.org/D120624
This has been a major TODO for a very long time, and is necessary for establishing a proper
dialect-free dependency layering for the Transforms library. Code was moved to effectively
two main locations:
* Affine/
There was quite a bit of affine dialect related code in Transforms/ do to historical reasons
(of a time way into MLIR's past). The following headers were moved to:
Transforms/LoopFusionUtils.h -> Dialect/Affine/LoopFusionUtils.h
Transforms/LoopUtils.h -> Dialect/Affine/LoopUtils.h
Transforms/Utils.h -> Dialect/Affine/Utils.h
The following transforms were also moved:
AffineLoopFusion, AffinePipelineDataTransfer, LoopCoalescing
* SCF/
Only one SCF pass was in Transforms/ (likely accidentally placed here): ParallelLoopCollapsing
The SCF specific utilities in LoopUtils have been moved to SCF/Utils.h
* Misc:
mlir::moveLoopInvariantCode was also moved to LoopLikeInterface.h given
that it is a simple utility defined in terms of LoopLikeOpInterface.
Differential Revision: https://reviews.llvm.org/D117848
The only benefit of FunctionPass is that it filters out function
declarations. This isn't enough to justify carrying it around, as we can
simplify filter out declarations when necessary within the pass. We can
also explore with better scheduling primitives to filter out declarations
at the pipeline level in the future.
The definition of FunctionPass is left intact for now to allow time for downstream
users to migrate.
Differential Revision: https://reviews.llvm.org/D117182
The current state of the top level Analysis/ directory is that it contains two libraries;
a generic Analysis library (free from dialect dependencies), and a LoopAnalysis library
that contains various analysis utilities that originated from Affine loop transformations.
This commit moves the LoopAnalysis to the more appropriate home of `Dialect/Affine/Analysis/`,
given the use and intention of the majority of the code within it. After the move, if there
are generic utilities that would fit better in the top-level Analysis/ directory, we can move
them.
Differential Revision: https://reviews.llvm.org/D117351
Follow up to also use the prefixed emitters in OpFormatGen (moved
getGetterName(s) and getSetterName(s) to Operator as that is most
convenient usage wise even though it just depends on Dialect). Prefix
accessors in Test dialect and follow up on missed changes in
OpDefinitionsGen.
Differential Revision: https://reviews.llvm.org/D112118
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Switches to adding target specific, private includes instead of adding
global includes.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D109494