Arithmetic constants for vector types can be constructed from objects
implementing Python buffer protocol such as `array.array`. Note that
until Python 3.12, there is no typing support for buffer protocol
implementers, so the annotations use array explicitly.
Reverts llvm/llvm-project#84103
Arithmetic constants for vector types can be constructed from objects
implementing Python buffer protocol such as `array.array`. Note that
until Python 3.12, there is no typing support for buffer protocol
implementers, so the annotations use array explicitly.
From https://reviews.llvm.org/D153245
This adds support for native PDL (and PDLL) C++ constraints to return
results.
This is useful for situations where a pattern checks for certain
constraints of multiple interdependent attributes and computes a new
attribute value based on them. Currently, for such an example it is
required to escape to C++ during matching to perform the check and after
a successful match again escape to native C++ to perform the computation
during the rewriting part of the pattern. With this work we can do the
computation in C++ during matching and use the result in the rewriting
part of the pattern. Effectively this enables a choice in the trade-off
of memory consumption during matching vs recomputation of values.
This is an example of a situation where this is useful: We have two
operations with certain attributes that have interdependent constraints.
For instance `attr_foo: one_of [0, 2, 4, 8], attr_bar: one_of [0, 2, 4,
8]` and `attr_foo == attr_bar`. The pattern should only match if all
conditions are true. The new operation should be created with a new
attribute which is computed from the two matched attributes e.g.
`attr_baz = attr_foo * attr_bar`. For the check we already escape to
native C++ and have all values at hand so it makes sense to directly
compute the new attribute value as well:
```
Constraint checkAndCompute(attr0: Attr, attr1: Attr) -> Attr;
Pattern example with benefit(1) {
let foo = op<test.foo>() {attr = attr_foo : Attr};
let bar = op<test.bar>(foo) {attr = attr_bar : Attr};
let attr_baz = checkAndCompute(attr_foo, attr_bar);
rewrite bar with {
let baz = op<test.baz> {attr=attr_baz};
replace bar with baz;
};
}
```
To achieve this the following notable changes were necessary:
PDLL:
- Remove check in PDLL parser that prevented native constraints from
returning results
PDL:
- Change PDL definition of pdl.apply_native_constraint to allow variadic
results
PDL_interp:
- Change PDL_interp definition of pdl_interp.apply_constraint to allow
variadic results
PDLToPDLInterp Pass:
The input to the pass is an arbitrary number of PDL patterns. The pass
collects the predicates that are required to match all of the pdl
patterns and establishes an ordering that allows creation of a single
efficient matcher function to match all of them. Values that are matched
and possibly used in the rewriting part of a pattern are represented as
positions. This allows fusion and thus reusing a single position for
multiple matching patterns. Accordingly, we introduce
ConstraintPosition, which records the type and index of the result of
the constraint. The problem is for the corresponding value to be used in
the rewriting part of a pattern it has to be an input to the
pdl_interp.record_match operation, which is generated early during the
pass such that its surrounding block can be referred to by branching
operations. In consequence the value has to be materialized after the
original pdl.apply_native_constraint has been deleted but before we get
the chance to generate the corresponding pdl_interp.apply_constraint
operation. We solve this by emitting a placeholder value when a
ConstraintPosition is evaluated. These placeholder values (due to fusion
there may be multiple for one constraint result) are replaced later when
the actual pdl_interp.apply_constraint operation is created.
Changes since the phabricator review:
- Addressed all comments
- In particular, removed registerConstraintFunctionWithResults and
instead changed registerConstraintFunction so that contraint functions
always have results (empty by default)
- Thus we don't need to reuse `rewriteFunctions` to store constraint
functions with results anymore, and can instead use
`constraintFunctions`
- Perform a stable sort of ConstraintQuestion, so that
ConstraintQuestion appear before other ConstraintQuestion that use their
results.
- Don't create placeholders for pdl_interp::ApplyConstraintOp. Instead
generate the `pdl_interp::ApplyConstraintOp` before generating the
successor block.
- Fixed a test failure in the pdl python bindings
Original code by @martin-luecke
Co-authored-by: martin-luecke <martinpaul.luecke@amd.com>
Expose the API for constructing and inspecting StructTypes from the LLVM
dialect. Separate constructor methods are used instead of overloads for
better readability, similarly to IntegerType.
…ct LevelType from LevelFormat and properties instead.
**Rationale**
We used to explicitly declare every possible combination between
`LevelFormat` and `LevelProperties`, and it now becomes difficult to
scale as more properties/level formats are going to be introduced.
1. Add python test for n out of m
2. Add more methods for python binding
3. Add verification for n:m and invalid encoding tests
4. Add e2e test for n:m
Previous PRs for n:m #80501#79935
1. C++ enum is set through enum class LevelType : uint_64.
2. C enum is set through typedef uint_64 level_type. It is due to the
limitations in Windows build: setting enum width to ui64 is not
supported in C.
The current implementation of `nvvm.wgmma.mma_async` Op deduces the data
type of the output matrix from the data type of struct member, which can be
non-intuitive, especially in cases where types like `2xf16` are packed
into `i32`.
This PR addresses this issue by improving the Op to include an explicit
data type for the output matrix.
The modified Op now includes an explicit data type for Matrix-D (<f16>),
and looks as follows:
```
%result = llvm.mlir.undef : !llvm.struct<(struct<(i32, i32, ...
nvvm.wgmma.mma_async
%descA, %descB, %result,
#nvvm.shape<m = 64, n = 32, k = 16>,
D [<f16>, #nvvm.wgmma_scale_out<zero>],
A [<f16>, #nvvm.wgmma_scale_in<neg>, <col>],
B [<f16>, #nvvm.wgmma_scale_in<neg>, <col>]
```
Add overflow flags support to the following ops:
* `arith.addi`
* `arith.subi`
* `arith.muli`
Example of new syntax:
```
%res = arith.addi %arg1, %arg2 overflow<nsw> : i64
```
Similar to existing LLVM dialect syntax
```
%res = llvm.add %arg1, %arg2 overflow<nsw> : i64
```
Tablegen canonicalization patterns updated to always drop flags, proper
support with tests will be added later.
Updated LLVMIR translation as part of this commit as it currenly written
in a way that it will crash when new attributes added to arith ops
otherwise.
Also lower `arith` overflow flags to corresponding SPIR-V op decorations
Discussion
https://discourse.llvm.org/t/rfc-integer-overflow-flags-support-in-arith-dialect/76025
This effectively rolls forward #77211, #77700 and #77714 while adding a
test to ensure the Python usage is not broken. More follow up needed but
unrelated to the core change here. The changes here are minimal and just
correspond to "textual namespacing" ODS side, no C++ or Python changes
were needed.
---------
---------
Co-authored-by: Ivan Butygin <ivan.butygin@gmail.com>, Yi Wu <yi.wu2@arm.com>
In addition to the existing `OpHandle` which provides an abstraction to
emit transform ops targeting operations this introduces a similar
concept for _values_ and _parameters_ in form of `ValueHandle` and
`ParamHandle`.
New core transform abstractions:
- `constant_param`
- `OpHandle.get_result`
- `OpHandle.print`
- `ValueHandle.get_defining_op`
This adds Python abstractions for the different handle types of the
transform dialect
The abstractions allow for straightforward chaining of transforms by
calling their member functions.
As an initial PR for this infrastructure, only a single transform is
included: `transform.structured.match`.
With a future `tile` transform abstraction an example of the usage is:
```Python
def script(module: OpHandle):
module.match_ops(MatchInterfaceEnum.TilingInterface).tile(tile_sizes=[32,32])
```
to generate the following IR:
```mlir
%0 = transform.structured.match interface{TilingInterface} in %arg0
%tiled_op, %loops = transform.structured.tile_using_for %0 [32, 32]
```
These abstractions are intended to enhance the usability and flexibility
of the transform dialect by providing an accessible interface that
allows for easy assembly of complex transformation chains.
The "Dim" prefix is a legacy left-over that no longer makes sense, since
we have a very strict "Dimension" vs. "Level" definition for sparse
tensor types and their storage.
This PR adds "value casting", i.e., a mechanism to wrap `ir.Value` in a
proxy class that overloads dunders such as `__add__`, `__sub__`, and
`__mul__` for fun and great profit.
This is thematically similar to
bfb1ba7526
and
9566ee2806.
The example in the test demonstrates the value of the feature (no pun
intended):
```python
@register_value_caster(F16Type.static_typeid)
@register_value_caster(F32Type.static_typeid)
@register_value_caster(F64Type.static_typeid)
@register_value_caster(IntegerType.static_typeid)
class ArithValue(Value):
__add__ = partialmethod(_binary_op, op="add")
__sub__ = partialmethod(_binary_op, op="sub")
__mul__ = partialmethod(_binary_op, op="mul")
a = arith.constant(value=FloatAttr.get(f16_t, 42.42))
b = a + a
# CHECK: ArithValue(%0 = arith.addf %cst, %cst : f16)
print(b)
a = arith.constant(value=FloatAttr.get(f32_t, 42.42))
b = a - a
# CHECK: ArithValue(%1 = arith.subf %cst_0, %cst_0 : f32)
print(b)
a = arith.constant(value=FloatAttr.get(f64_t, 42.42))
b = a * a
# CHECK: ArithValue(%2 = arith.mulf %cst_1, %cst_1 : f64)
print(b)
```
**EDIT**: this now goes through the bindings and thus supports automatic
casting of `OpResult` (including as an element of `OpResultList`),
`BlockArgument` (including as an element of `BlockArgumentList`), as
well as `Value`.
<img
src="https://github.com/llvm/llvm-project/assets/5657668/443852b6-ac25-45bb-a38b-5dfbda09d5a7"
height="400" />
<p></p>
So turns out that none of the `replace=True` things actually work
because of the map caches (except for
`register_attribute_builder(replace=True)`, which doesn't use such a
cache). This was hidden by a series of unfortunate events:
1. `register_type_caster` failure was hidden because it was the same
`TestIntegerRankedTensorType` being replaced with itself (d'oh).
2. `register_operation` failure was hidden behind the "order of events"
in the lifecycle of typical extension import/use. Since extensions are
loaded/registered almost immediately after generated builders are
registered, there is no opportunity for the `operationClassMapCache` to
be populated (through e.g., `module.body.operations[2]` or
`module.body.operations[2].opview` or something). Of course as soon as
you as actually do "late-bind/late-register" the extension, you see it's
not successfully replacing the stale one in `operationClassMapCache`.
I'll take this opportunity to propose we ditch the caches all together.
I've been cargo-culting them but I really don't understand how they
work. There's this comment above `operationClassMapCache`
```cpp
/// Cache of operation name to external operation class object. This is
/// maintained on lookup as a shadow of operationClassMap in order for repeat
/// lookups of the classes to only incur the cost of one hashtable lookup.
llvm::StringMap<pybind11::object> operationClassMapCache;
```
But I don't understand how that's true given that the canonical thing
`operationClassMap` is already a map:
```cpp
/// Map of full operation name to external operation class object.
llvm::StringMap<pybind11::object> operationClassMap;
```
Maybe it wasn't always the case? Anyway things work now but it seems
like an unnecessary layer of complexity for not much gain? But maybe I'm
wrong.
Added missing register_translations in python to replicate the same in
the C-API
Cleaned up the current calls to register passes where the other calls
are already embedded in the mlirRegisterAllPasses.
found here,
https://discourse.llvm.org/t/opencl-example/74187
Changes:
1. For both dimToLvl and lvlToDim, always returns the actual map instead
of AffineMap() for identity map.
2. Updated custom builder for encoding to have default values.
3. Non-inferable lvlToDim will still return AffineMap() during
inference, so it will be caught by verifier.
Currently, `linalg.transpose` and `linalg.broadcast` can't be emitted
through either the C API or the python bindings (which of course go
through the C API). See
https://discourse.llvm.org/t/how-to-build-linalg-transposeop-in-mlir-pybind/73989/10.
The reason is even though they're named ops, there is no opdsl
`@linalg_structured_op` for them and thus while they can be instantiated
they cannot be passed to
[`mlirLinalgFillBuiltinNamedOpRegion`](a7cccb9cbb/mlir/lib/CAPI/Dialect/Linalg.cpp (L18)).
I believe the issue is they both take a `IndexAttrDef` but
`IndexAttrDef` cannot represent dynamic rank. Note, if I'm mistaken and
there is a way to write the `@linalg_structured_op` let me know.
The solution here simply implements the `regionBuilder` interface which
is then picked up by
[`LinalgDialect::addNamedOpBuilders`](7557530f42/mlir/lib/Dialect/Linalg/IR/LinalgDialect.cpp (L116)).
Extension classes are added "by hand" that mirror the API of the
`@linalg_structured_op`s. Note, the extension classes are added to to
`dialects/linalg/__init__.py` instead of
`dialects/linalg/opdsl/ops/core_named_ops.py` in order that they're not
confused for opdsl generators/emitters.
This PR replaces the mixin `OpView` extension mechanism with the
standard inheritance mechanism.
Why? Firstly, mixins are not very pythonic (inheritance is usually used
for this), a little convoluted, and too "tight" (can only be used in the
immediately adjacent `_ext.py`). Secondly, it (mixins) are now blocking
are correct implementation of "value builders" (see
[here](https://github.com/llvm/llvm-project/pull/68764)) where the
problem becomes how to choose the correct base class that the value
builder should call.
This PR looks big/complicated but appearances are deceiving; 4 things
were needed to make this work:
1. Drop `skipDefaultBuilders` in
`OpPythonBindingGen::emitDefaultOpBuilders`
2. Former mixin extension classes are converted to inherit from the
generated `OpView` instead of being "mixins"
a. extension classes that simply were calling into an already generated
`super().__init__` continue to do so
b. (almost all) extension classes that were calling `self.build_generic`
because of a lack of default builder being generated can now also just
call `super().__init__`
3. To handle the [lone single
use-case](https://sourcegraph.com/search?q=context%3Aglobal+select_opview_mixin&patternType=standard&sm=1&groupBy=repo)
of `select_opview_mixin`, namely
[linalg](https://github.com/llvm/llvm-project/blob/main/mlir/python/mlir/dialects/_linalg_ops_ext.py#L38),
only a small change was necessary in `opdsl/lang/emitter.py` (thanks to
the emission/generation of default builders/`__init__`s)
4. since the `extend_opview_class` decorator is removed, we need a way
to register extension classes as the desired `OpView` that `op.opview`
conjures into existence; so we do the standard thing and just enable
replacing the existing registered `OpView` i.e.,
`register_operation(_Dialect, replace=True)`.
Note, the upgrade path for the common case is to change an extension to
inherit from the generated builder and decorate it with
`register_operation(_Dialect, replace=True)`. In the slightly more
complicated case where `super().__init(self.build_generic(...))` is
called in the extension's `__init__`, this needs to be updated to call
`__init__` in `OpView`, i.e., the grandparent (see updated docs).
Note, also `<DIALECT>_ext.py` files/modules will no longer be automatically loaded.
Note, the PR has 3 base commits that look funny but this was done for
the purpose of tracking the line history of moving the
`<DIALECT>_ops_ext.py` class into `<DIALECT>.py` and updating (commit
labeled "fix").