This reverts a feature introduced in commit
2a5d497494. The goal of that commit was to
allow `StringAttr`s to by used transparently wherever Python `str`s are
expected. But, as the tests in https://reviews.llvm.org/D159182 reveal,
pybind11 doesn't do this conversion based on `__str__` automatically,
unlike for the other types introduced in the commit above. At the same
time, changing `__str__` breaks the symmetry with other attributes of
`print(attr)` printing the assembly of the attribute, so the change
probably has more disadvantages than advantages.
Reviewed By: springerm, rkayaith
Differential Revision: https://reviews.llvm.org/D159255
The printing of `StringAttr` was changed in
https://reviews.llvm.org/D158974, such that some test cases relying on
that output had to be changed as well.
This allows to use Python's `bool(.)`, `float(.)`, `int(.)`, and
`str(.)` to convert pybound attributes to the corresponding native
Python types. In particular, pybind11 uses these functions to
automatically cast objects to the corresponding primitive types wherever
they are required by pybound functions, e.g., arguments are converted to
Python's `int` if the C++ signature requires a C++ `int`. With this
patch, pybound attributes can by used wherever the corresponding native
types are expected. New tests show-case this behavior in the
constructors of `Dense*ArrayAttr`.
Note that this changes the output of Python's `str` on `StringAttr` from
`"hello"` to `hello`. Arguably, this is still in line with `str`s goal
of producing a readable interpretation of the value, even if it is now
not unambiously a string anymore (`print(ir.Attribute.parse('"42"'))`
now outputs `42`). However, this is consistent with instances of
Python's `str` (`print("42")` outputs `42`), and `repr` still provides
an unambigous representation if one is required.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D158974
This patch makes the getter function of `DenseBoolArrayAttr` work more
intuitively. Until now, it was implemented with a `std::vector<int>`
argument, which works in the typical situation where you call the pybind
function with a list of Python bools (like `[True, False]`). However, it
does *not* work if the elements of the list have to be cast to Bool
before (and that is the default behavior for lists of all other types).
The patch thus changes the signature to `std::vector<bool>`, which helps
pybind to make the function behave as expected for bools. The tests now
also contain a case where such a cast is happening. This also makes the
conversion of `DenseBoolArrayAttr` back to Python more intuitive:
instead of converting to `0` and `1`, the elements are now converted to
`False` and `True`.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D158973
Extends the existing mix-in for VectorizeOp with support for the missing unit attributes.
Also fixes the unintuitive implementation where
`structured.VectorizeOp(target=target, vectorize_padding=False)` still resulted in the creation of the UnitAttr `vectorize_padding`.
Reviewed By: ingomueller-net
Differential Revision: https://reviews.llvm.org/D158726
This PR implements python enum bindings for *all* the enums - this includes `I*Attrs` (including positional/bit) and `Dialect/EnumAttr`.
There are a few parts to this:
1. CMake: a small addition to `declare_mlir_dialect_python_bindings` and `declare_mlir_dialect_extension_python_bindings` to generate the enum, a boolean arg `GEN_ENUM_BINDINGS` to make it opt-in (even though it works for basically all of the dialects), and an optional `GEN_ENUM_BINDINGS_TD_FILE` for handling corner cases.
2. EnumPythonBindingGen.cpp: there are two weedy aspects here that took investigation:
1. If an enum attribute is not a `Dialect/EnumAttr` then the `EnumAttrInfo` record is canonical, as far as both the cases of the enum **and the `AttrDefName`**. On the otherhand, if an enum is a `Dialect/EnumAttr` then the `EnumAttr` record has the correct `AttrDefName` ("load bearing", i.e., populates `ods.ir.AttributeBuilder('<NAME>')`) but its `enum` field contains the cases, which is an instance of `EnumAttrInfo`. The solution is to generate an one enum class for both `Dialect/EnumAttr` and "independent" `EnumAttrInfo` but to make that class interopable with two builder registrations that both do the right thing (see next sub-bullet).
2. Because we don't have a good connection to cpp `EnumAttr`, i.e., only the `enum class` getters are exposed (like `DimensionAttr::get(Dimension value)`), we have to resort to parsing e.g., `Attribute.parse(f'#gpu<dim {x}>')`. This means that the set of supported `assemblyFormat`s (for the enum) is fixed at compile of MLIR (currently 2, the only 2 I saw). There might be some things that could be done here but they would require quite a bit more C API work to support generically (e.g., casting ints to enum cases and binding all the getters or going generically through the `symbolize*` methods, like `symbolizeDimension(uint32_t)` or `symbolizeDimension(StringRef)`).
A few small changes:
1. In addition, since this patch registers default builders for attributes where people might've had their own builders already written, I added a `replace` param to `AttributeBuilder.insert` (`False` by default).
2. `makePythonEnumCaseName` can't handle all the different ways in which people write their enum cases, e.g., `llvm.CConv.Intel_OCL_BI`, which gets turned into `INTEL_O_C_L_B_I` (because `llvm::convertToSnakeFromCamelCase` doesn't look for runs of caps). So I dropped it. On the otherhand regularization does need to done because some enums have `None` as a case (and others might have other python keywords).
3. I turned on `llvm` dialect generation here in order to test `nvvm.WGMMAScaleIn`, which is an enum with [[ d7e26b5620/mlir/include/mlir/IR/EnumAttr.td (L22-L25) | no explicit discriminator ]] for the `neg` case.
Note, dialects that didn't get a `GEN_ENUM_BINDINGS` don't have any enums to generate.
Let me know if I should add more tests (the three trivial ones I added exercise both the supported `assemblyFormat`s and `replace=True`).
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D157934
In particular:
* Fix and extend the support for constructing possibly nested ArrayAttrs
from lists of Python ints. This can probably be generalized further
and used in many more places.
* Add arguments for `pad_to_multiple_of` and `copy_back_op`.
* Format with black and reorder (keyword-only) arguments to match
tablegen and (`*_gen.py`) order.
* Extend tests for new features.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D157789
The tests of the mix-in classes of the Python bindings currently passed
even if the ops constructed by the mix-ins under test failed to verify.
This is because the assembled IR is still printed in generic form even
if it does not verify, and the `CHECK` statements are formulated in such
a lenient way that they also match that generic form. This patch adds
explicit verification to the decorator that is used for all test
functions.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D157790
Reland of the original patch after updating the Python binding tests,
a few CUDA/GPU MLIR tests, and ensuring the assembly format is
round-trippable.
This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.
The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.
To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:
vector.print punctuation <comma>
lowers to
llvm.call @printComma() : () -> ()
The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).
Reviewed By: awarzynski, c-rhodes, aartbik
Differential Revision: https://reviews.llvm.org/D156519
This renaming started with the native ODS support for properties, this is completing it.
A mass automated textual rename seems safe for most codebases.
Drop also the ods prefix to keep the accessors the same as they were before
this change:
properties.odsOperandSegmentSizes
reverts back to:
properties.operandSegementSizes
The ODS prefix was creating divergence between all the places and make it harder to
be consistent.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D157173
Reland of the original patch after updating the Python binding tests and
a few CUDA/GPU MLIR tests.
This patch splits the lowering of vector.print into first converting
an n-D print into a loop of scalar prints of the elements, then a second
pass that converts those scalar prints into the runtime calls. The
former is done in VectorToSCF and the latter in VectorToLLVM.
The main reason for this is to allow printing scalable vector types,
which are not possible to fully unroll at compile time, though this
also avoids fully unrolling very large vectors.
To allow VectorToSCF to add the necessary punctuation between vectors
and elements, a "punctuation" attribute has been added to vector.print.
This abstracts calling the runtime functions such as printNewline(),
without leaking the LLVM details into the higher abstraction levels.
For example:
vector.print <comma>
lowers to
llvm.call @printComma() : () -> ()
The output format and runtime functions remain the same, which avoids
the need to alter a large number of tests (aside from the pipelines).
Reviewed By: awarzynski, c-rhodes, aartbik
Differential Revision: https://reviews.llvm.org/D156519
This patch adds a mix-in class for the only transform op of the tensor
dialect that can benefit from one: the MakeLoopIndependentOp. It adds an
overload that makes providing the return type optional.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D156918
This patch uses the new enum binding generation to add the enums of the
dialect to the Python bindings and uses them in the mix-in class where
it was still missing (namely, the `LayoutMapOption` for the
`function_boundary_type_conversion` of the `OneShotBufferizeOp`.
The patch also piggy-backs a few smaller clean-ups:
* Order the keyword-only arguments alphabetically.
* Add the keyword-only arguments to an overload where they were left out
by accident.
* Change some of the attribute values used in the tests to non-default
values such that they show up in the output IR and check for that
output.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D156664
Create a mix-in class with an overloaded constructor that makes the
return type optional.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D156561
Provide Python bindings for transform ops defined in the vector dialect.
All of these ops are sufficiently simple that no mixins are necessary
for them to be nicely usable.
Reviewed By: ingomueller-net
Differential Revision: https://reviews.llvm.org/D156554
Add the Python mix-in for MapNestedForallToThreads. Fix typing
annotations in MapForallToBlocks and drop the attribute wrapping
rendered unnecessary by attribute builders.
Reviewed By: ingomueller-net
Differential Revision: https://reviews.llvm.org/D156528
LLVM has converged to using black for Python formatting. Remove the yapf
configs MLIR used to rely on before that (the reformatting has already
happened).
This patch adds mix-in classes for the Python bindings of
`EmptyTensorToAllocTensorOp` and `OneShotBufferizeOp`. For both classes,
the mix-in add overloads to the `__init__` functions that allow to
construct them without providing the return type, which is defaulted to
the only allowed type and `AnyOpType`, respectively.
Note that the mix-in do not expose the
`function_boundary_type_conversion` attribute. The attribute has a
custom type from the bufferization dialect that is currently not exposed
in the Python bindings. Handling of that attribute can be added easily
to the mix-in class when the need arises.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D155799
The operand_segment_sizes and result_segment_sizes Attributes are now inlined
in the operation as native propertie. We continue to support building an
Attribute on the fly for `getAttr("operand_segment_sizes")` and setting the
property from an attribute with `setAttr("operand_segment_sizes", attr)`.
A new bytecode version is introduced to support backward compatibility and
backdeployments.
Differential Revision: https://reviews.llvm.org/D155919
The operand_segment_sizes and result_segment_sizes Attributes are now inlined
in the operation as native propertie. We continue to support building an
Attribute on the fly for `getAttr("operand_segment_sizes")` and setting the
property from an attribute with `setAttr("operand_segment_sizes", attr)`.
A new bytecode version is introduced to support backward compatibility and
backdeployments.
Differential Revision: https://reviews.llvm.org/D155919
Allow the `names` argument in `MatchOp.match_op_names` to be of type
`str` in addition to `Sequence[str]`. In this case, the argument is
treated as a list with one name, i.e., it is possible to write
`MatchOp.match_op_names(..., "test.dummy")` instead of
`MatchOp.match_op_names(..., ["test.dummy"])`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155807
This patch adds a mixin for ApplyPatternsOp to _transform_ops_ext.py
with syntactic sugar for construction such ops. Curiously, the op did
not have any constructors yet, probably because its tablegen definition
said to skip the default builders. The new constructor is thus quite
straightforward. The commit also adds a refined `region` property which
returns the first block of the single region.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155435
This patch adds a mix-in class for MapForallToBlocks with overloaded
constructors. This makes it optional to provide the return type of the
op, which is defaulte to `AnyOpType`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155717
The class did not have any mix-in until now. The new mix-in has two
overloads for the constructor of the class: one with all arguments and
one without the result types, which are defaulted to `AnyOpType`.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155695
This patch adds a mixin for TileToForallOp to
_structured_transform_ops_ext.py with syntactic sugar for construction
such ops. First, the types of the results are made optional and filled
with common default values if omitted. Second, for num_threads and
tile_sizes, the three possible forms (static, dynamic, or packed), can
now all be given through the same respective argument, which gets
dispatched to the correct form-specific argument automatically.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D155090
The extension class to MatchOp has a class method called match_op_names.
The previous version of that function did not allow to specify the
result type. This, however, may be useful/necessary if the op consuming
the resulting handle requires a particular type (such as the
bufferization.EmptyTensorToAllocTensorOp). This patch adds an overload
to match_op_names that allows to specify the result type.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D155567
This functionality has been replaced by TypeCasters (see D151840)
depends on D154468
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D154469
Not every NumPy type (e.g., the `ml_dtypes.bfloat16` NumPy extension
type) has a type in the Python buffer protocol, so exporting such a
buffer with `PyBUF_FORMAT` may fail.
However, we don't care about the self-reported type of a buffer if the
user provides an explicit type. In the case that an explicit type is
provided, don't request the format from the buffer protocol, which
allows arrays whose element types are unknown to the buffer protocol to
be passed.
Reviewed By: jpienaar, ftynse
Differential Revision: https://reviews.llvm.org/D155209
Update remaining `PyAttribute`-returning APIs to return `MlirAttribute` instead,
so that they go through the downcasting mechanism.
Reviewed By: makslevental
Differential Revision: https://reviews.llvm.org/D154462
* Rename op to `transform.get_parent_op`
* Match parents by "is isolated from above" and/or op name, or just the direct parent.
* Deduplication of result payload ops is optional.
Differential Revision: https://reviews.llvm.org/D154071