Commit Graph

57 Commits

Author SHA1 Message Date
Nicolas Vasilache
fdbbb3c274 Use lambdas for nesting edsc constructs.
Using ArrayRef introduces issues with the order of evaluation between a constructor and
    the arguments of the subsequent calls to the `operator()`.
    As a consequence the order of captures is not well-defined can go wrong with certain compilers (e.g. gcc-6.4).
    This CL fixes the issue by using lambdas in lieu of ArrayRef.

--

PiperOrigin-RevId: 249114775
2019-05-20 13:50:28 -07:00
River Riddle
1a100849c4 Add support for saving and restoring the insertion point of a FuncBuilder. This also updates the edsc::ScopedContext to use a single builder that saves/restores insertion points. This is necessary for using edscs within RewritePatterns.
--

PiperOrigin-RevId: 248812645
2019-05-20 13:46:35 -07:00
Jacques Pienaar
cde4d5a6d9 Remove unnecessary C++ specifier in CPP files. NFC.
These are only required in .h files to disambiguate between C and C++ header files.

--

PiperOrigin-RevId: 248219135
2019-05-20 13:42:13 -07:00
River Riddle
adca3c2edc Replace Operation::cast with llvm::cast.
--

PiperOrigin-RevId: 247785983
2019-05-20 13:37:42 -07:00
River Riddle
4ea887be41 Namespaceify a few explicit template specializations to appease errors caused by a bug in gcc versions < 7.0.
(https://gcc.gnu.org/bugzilla/show_bug.cgi?id=56480)

--

PiperOrigin-RevId: 246664463
2019-05-06 08:29:09 -07:00
Nicolas Vasilache
258e8d9ce2 Prepend an "affine-" prefix to Affine pass option names - NFC
Trying to activate both LLVM and MLIR passes in mlir-cpu-runner showed name collisions when registering pass names.
    One possible way of disambiguating that should also work across dialects is to prepend the dialect name to the passes that specifically operate on that dialect.

    With this CL, mlir-cpu-runner tests still run when both LLVM and MLIR passes are registered

--

PiperOrigin-RevId: 246539917
2019-05-06 08:26:44 -07:00
Lei Zhang
2e7895d5f1 Add parentheses in various asserts to group predicates
This addresses the "suggest parentheses around ‘&&’ within ‘||’
    [-Wparentheses]" compiler warnings.

--

PiperOrigin-RevId: 242868670
2019-04-11 10:52:21 -07:00
Nicolas Vasilache
f1b12f5a64 Fix test that fails on non-determinism in LowerVectorTransfers
This CL fixes the non-determinism across compilers in an edsc::select expression used in LowerVectorTransfers. This is achieved by factoring the expression out of the function call to ensure a deterministic order of evaluation.
    Since the expression is now factored out, fewer IR is generated and the test is updated accordingly.

--

PiperOrigin-RevId: 241679962
2019-04-03 01:09:13 -07:00
River Riddle
084669e005 Remove MLPatternLoweringPass and rewrite LowerVectorTransfers to use RewritePattern instead.
--

PiperOrigin-RevId: 241455472
2019-04-02 13:39:17 -07:00
Nicolas Vasilache
c9d5f3418a Cleanup SuperVectorization dialect printing and parsing.
On the read side,
```
%3 = vector_transfer_read %arg0, %i2, %i1, %i0 {permutation_map: (d0, d1, d2)->(d2, d0)} : (memref<?x?x?xf32>, index, index, index) -> vector<32x256xf32>
```

becomes:

```
%3 = vector_transfer_read %arg0[%i2, %i1, %i0] {permutation_map: (d0, d1, d2)->(d2, d0)} : memref<?x?x?xf32>, vector<32x256xf32>
```

On the write side,

```
vector_transfer_write %0, %arg0, %c3, %c3 {permutation_map: (d0, d1)->(d0)} : vector<128xf32>, memref<?x?xf32>, index, index
```

becomes

```
vector_transfer_write %0, %arg0[%c3, %c3] {permutation_map: (d0, d1)->(d0)} : vector<128xf32>, memref<?x?xf32>
```

Documentation will be cleaned up in a followup commit that also extracts a proper .md from the top of the file comments.

PiperOrigin-RevId: 241021879
2019-03-29 17:56:42 -07:00
River Riddle
99b87c9707 Replace usages of Instruction with Operation in the Transforms/ directory.
PiperOrigin-RevId: 240636130
2019-03-29 17:47:26 -07:00
River Riddle
f9d91531df Replace usages of Instruction with Operation in the /IR directory.
This is step 2/N to renaming Instruction to Operation.

PiperOrigin-RevId: 240459216
2019-03-29 17:43:37 -07:00
Chris Lattner
46ade282c8 Make FunctionPass::getFunction() return a reference to the function, instead of
a pointer.  This makes it consistent with all the other methods in
FunctionPass, as well as with ModulePass::getModule().  NFC.

PiperOrigin-RevId: 240257910
2019-03-29 17:40:44 -07:00
River Riddle
96ebde9cfd Replace usages of "Op::operator->" with ".".
This is step 2/N of removing the temporary operator-> method as part of the de-const transition.

PiperOrigin-RevId: 240200792
2019-03-29 17:40:09 -07:00
River Riddle
832567b379 NFC: Rename the 'for' operation in the AffineOps dialect to 'affine.for' and set the namespace of the AffineOps dialect to 'affine'.
PiperOrigin-RevId: 240165792
2019-03-29 17:39:03 -07:00
Chris Lattner
d9b5bc8f55 Remove OpPointer, cleaning up a ton of code. This also moves Ops to using
inherited constructors, which is cleaner and means you can now use DimOp()
to get a null op, instead of having to use Instruction::getNull<DimOp>().

This removes another 200 lines of code.

PiperOrigin-RevId: 240068113
2019-03-29 17:36:21 -07:00
Nicolas Vasilache
f26c7cd792 Cleanup ValueHandleArray
We just need a way to unpack ArrayRef<ValueHandle> to ArrayRef<Value*>.
No need to expose this to the user.

This reduces the cognitive overhead for the tutorial.

PiperOrigin-RevId: 240037425
2019-03-29 17:35:20 -07:00
Nicolas Vasilache
a89d8c0a1a Port Tablegen'd reference implementation of Add to declarative builders.
PiperOrigin-RevId: 238977252
2019-03-29 17:22:36 -07:00
Nicolas Vasilache
3a12bc5041 Remove LOAD/STORE/RETURN boilerplate in declarative builders.
This CL introduces a ValueArrayHandle helper to manage the implicit conversion
of ArrayRef<ValueHandle> -> ArrayRef<Value*> by converting first to ValueArrayHandle.
Without this, boilerplate operations that take ArrayRef<Value*> cannot be removed easily.

This all seems to boil down to decoupling Value from Type.
Alternative solutions exist (e.g. MLIR using Value by value everywhere) but they would be very intrusive. This seems to be the lowest impedance change.

Intrinsics are also lowercased by popular demand.

PiperOrigin-RevId: 238974125
2019-03-29 17:22:20 -07:00
Nicolas Vasilache
f43388e4ce Port LowerVectorTransfers from EDSC + AST to declarative builders
This CL removes the dependency of LowerVectorTransfers on the AST version of EDSCs which will be retired.

This exhibited a pretty fundamental staging difference in AST-based vs declarative based emission.

Since the delayed creation with an AST was staged, the loop order came into existence after the clipping expressions were computed.
This now changes as the loops first need to be created declaratively in fixed order and then the clipping expressions are created.
Also, due to lack of staging, coalescing cannot be done on the fly anymore and
needs to be done either as a pre-pass (current implementation) or as a local transformation on the generated IR (future work).

Tests are updated accordingly.

PiperOrigin-RevId: 238971631
2019-03-29 17:22:06 -07:00
Uday Bondhugula
02af8c22df Change Pass:getFunction() to return pointer instead of ref - NFC
- change this for consistency - everything else similar takes/returns a
  Function pointer - the FuncBuilder ctor,
  Block/Value/Instruction::getFunction(), etc.
- saves a whole bunch of &s everywhere

PiperOrigin-RevId: 236928761
2019-03-29 16:58:35 -07:00
River Riddle
f37651c708 NFC. Move all of the remaining operations left in BuiltinOps to StandardOps. The only thing left in BuiltinOps are the core MLIR types. The standard types can't be moved because they are referenced within the IR directory, e.g. in things like Builder.
PiperOrigin-RevId: 236403665
2019-03-29 16:53:35 -07:00
Lei Zhang
85d9b6c8f7 Use consistent names for dialect op source files
This CL changes dialect op source files (.h, .cpp, .td) to follow the following
convention:

  <full-dialect-name>/<dialect-namespace>Ops.{h|cpp|td}

Builtin and standard dialects are specially treated, though. Both of them do
not have dialect namespace; the former is still named as BuiltinOps.* and the
latter is named as Ops.*.

Purely mechanical. NFC.

PiperOrigin-RevId: 236371358
2019-03-29 16:53:19 -07:00
River Riddle
ed5fe2098b Remove PassResult and have the runOnFunction/runOnModule functions return void instead. To signal a pass failure, passes should now invoke the 'signalPassFailure' method. This provides the equivalent functionality when needed, but isn't an intrusive part of the API like PassResult.
PiperOrigin-RevId: 236202029
2019-03-29 16:50:44 -07:00
River Riddle
c6c534493d Port all of the existing passes over to the new pass manager infrastructure. This is largely NFC.
PiperOrigin-RevId: 235952357
2019-03-29 16:47:14 -07:00
River Riddle
5410dff790 Rewrite MLPatternLoweringPass to no longer inherit from FunctionPass and just provide a utility function that applies ML patterns.
PiperOrigin-RevId: 235194034
2019-03-29 16:38:41 -07:00
River Riddle
3e656599f1 Define a PassID class to use when defining a pass. This allows for the type used for the ID field to be self documenting. It also allows for the compiler to know the set alignment of the ID object, which is useful for storing pointer identifiers within llvm data structures.
PiperOrigin-RevId: 235107957
2019-03-29 16:37:12 -07:00
River Riddle
48ccae2476 NFC: Refactor the files related to passes.
* PassRegistry is split into its own source file.
* Pass related files are moved to a new library 'Pass'.

PiperOrigin-RevId: 234705771
2019-03-29 16:32:56 -07:00
Alex Zinenko
b4dba895a6 EDSC: make Expr typed and extensible
Expose the result types of edsc::Expr, which are now stored for all types of
Exprs and not only for the variadic ones.  Require return types when an Expr is
constructed, if it will ever have some.  An empty return type list is
interpreted as an Expr that does not create a value (e.g. `return` or `store`).

Conceptually, all edss::Exprs are now typed, with the type being a (potentially
empty) tuple of return types.  Unbound expressions and Bindables must now be
constructed with a specific type they will take.  This makes EDSC less
evidently type-polymorphic, but we can still write generic code such as

    Expr sumOfSquares(Expr lhs, Expr rhs) { return lhs * lhs + rhs * rhs; }

and use it to construct different typed expressions as

    sumOfSquares(Bindable(IndexType::get(ctx)), Bindable(IndexType::get(ctx)));
    sumOfSquares(Bindable(FloatType::getF32(ctx)),
                 Bindable(FloatType::getF32(ctx)));

On the positive side, we get the following.
1. We can now perform type checking when constructing Exprs rather than during
   MLIR emission.  Nevertheless, this is still duplicates the Op::verify()
   until we can factor out type checking from that.
2. MLIREmitter is significantly simplified.
3. ExprKind enum is only used for actual kinds of expressions.  Data structures
   are converging with AbstractOperation, and the users can now create a
   VariadicExpr("canonical_op_name", {types}, {exprs}) for any operation, even
   an unregistered one without having to extend the enum and make pervasive
   changes to EDSCs.

On the negative side, we get the following.
1. Typed bindables are more verbose, even in Python.
2. We lose the ability to do print debugging for higher-level EDSC abstractions
   that are implemented as multiple MLIR Ops, for example logical disjunction.

This is the step 2/n towards making EDSC extensible.

***

Move MLIR Op construction from MLIREmitter::emitExpr to Expr::build since Expr
now has sufficient information to build itself.

This is the step 3/n towards making EDSC extensible.

Both of these strive to minimize the amount of irrelevant changes.  In
particular, this introduces more complex pretty-printing for affine and binary
expression to make sure tests continue to pass.  It also relies on string
comparison to identify specific operations that an Expr produces.

PiperOrigin-RevId: 234609882
2019-03-29 16:31:26 -07:00
Alex Zinenko
0a4c940c1b EDSC: introduce support for blocks
EDSC currently implement a block as a statement that is itself a list of
statements.  This suffers from two modeling problems: (1) these blocks are not
addressable, i.e. one cannot create an instruction where thus constructed block
is a successor; (2) they support block nesting, which is not supported by MLIR
blocks.  Furthermore, emitting such "compound statement" (misleadingly named
`Block` in Python bindings) does not actually produce a new Block in the IR.

Implement support for creating actual IR Blocks in EDSC.  In particular, define
a new StmtBlock EDSC class that is neither an Expr nor a Stmt but contains a
list of Stmts.  Additionally, StmtBlock may have (early-) typed arguments.
These arguments are Bindable expressions that can be used inside the block.
Provide two calls in the MLIREmitter, `emitBlock` that actually emits a new
block and `emitBlockBody` that only emits the instructions contained in the
block without creating a new block.  In the latter case, the instructions must
not use block arguments.

Update Python bindings to make it clear when instruction emission happens
without creating a new block.

PiperOrigin-RevId: 234556474
2019-03-29 16:30:56 -07:00
Alex Zinenko
0e59e5c49b EDSC: move Expr and Stmt construction operators to a namespace
In the current state, edsc::Expr and edsc::Stmt overload operators to construct
other Exprs and Stmts.  This includes some unconventional overloads of the
`operator==` to create a comparison expression and of the `operator!` to create
a negation expression.  This situation could lead to unpleasant surprises where
the code does not behave like expected.  Make all Expr and Stmt construction
operators free functions and move them to the `edsc::op` namespace.  Callers
willing to use these operators must explicitly include them with the `using`
declaration.  This can be done in some local scope.

Additionally, we currently emit signed comparisons for order-comparison
operators.  With namespaces, we can later introduce two sets of operators in
different namespace, e.g. `edsc::op::sign` and `edsc::op::unsign` to clearly
state which kind of comparison is implied.

PiperOrigin-RevId: 233578674
2019-03-29 16:25:08 -07:00
Uday Bondhugula
4ba8c9147d Automated rollback of changelist 232717775.
PiperOrigin-RevId: 232807986
2019-03-29 16:19:33 -07:00
River Riddle
90d10b4e00 NFC: Rename the 'for' operation in the AffineOps dialect to 'affine.for'. The is the second step to adding a namespace to the AffineOps dialect.
PiperOrigin-RevId: 232717775
2019-03-29 16:17:59 -07:00
River Riddle
b499277fb6 Remove remaining usages of OperationInst in lib/Transforms.
PiperOrigin-RevId: 232323671
2019-03-29 16:10:53 -07:00
Nicolas Vasilache
0353ef99eb Cleanup EDSCs and start a functional auto-generated library of custom Ops
This CL applies the following simplifications to EDSCs:
1. Rename Block to StmtList because an MLIR Block is a different, not yet
supported, notion;
2. Rework Bindable to drop specific storage and just use it as a simple wrapper
around Expr. The only value of Bindable is to force a static cast when used by
the user to bind into the emitter. For all intended purposes, Bindable is just
a lightweight check that an Expr is Unbound. This simplifies usage and reduces
the API footprint. After playing with it for some time, it wasn't worth the API
cognition overhead;
3. Replace makeExprs and makeBindables by makeNewExprs and copyExprs which is
more explicit and less easy to misuse;
4. Add generally useful functionality to MLIREmitter:
  a. expose zero and one for the ubiquitous common lower bounds and step;
  b. add support to create already bound Exprs for all function arguments as
  well as shapes and views for Exprs bound to memrefs.
5. Delete Stmt::operator= and replace by a `Stmt::set` method which is more
explicit.
6. Make Stmt::operator Expr() explicit.
7. Indexed.indices assertions are removed to pave the way for expressing slices
and views as well as to work with 0-D memrefs.

The CL plugs those simplifications with TableGen and allows emitting a full MLIR function for
pointwise add.

This "x.add" op is both type and rank-agnostic (by allowing ArrayRef of Expr
passed to For loops) and opens the door to spinning up a composable library of
existing and custom ops that should automate a lot of the tedious work in
TF/XLA -> MLIR.

Testing needs to be significantly improved but can be done in a separate CL.

PiperOrigin-RevId: 231982325
2019-03-29 16:05:23 -07:00
Nicolas Vasilache
81c7f2e2f3 Cleanup resource management and rename recursive matchers
This CL follows up on a memory leak issue related to SmallVector growth that
escapes the BumpPtrAllocator.
The fix is to properly use ArrayRef and placement new to define away the
issue.

The following renaming is also applied:
1. MLFunctionMatcher -> NestedPattern
2. MLFunctionMatches -> NestedMatch

As a consequence all allocations are now guaranteed to live on the BumpPtrAllocator.

PiperOrigin-RevId: 231047766
2019-03-29 15:39:53 -07:00
River Riddle
6859f33292 Migrate VectorOrTensorType/MemRefType shape api to use int64_t instead of int.
PiperOrigin-RevId: 230605756
2019-03-29 15:33:20 -07:00
Nicolas Vasilache
9f3f39d61a Cleanup EDSCs
This CL performs a bunch of cleanups related to EDSCs that are generally
useful in the context of using them with a simple wrapping C API (not in this
CL) and with simple language bindings to Python and Swift.

PiperOrigin-RevId: 230066505
2019-03-29 15:27:58 -07:00
Nicolas Vasilache
4573a8da9a Fix improperly indexed DimOp in LowerVectorTransfers.cpp
This CL fixes a misunderstanding in how to build DimOp which triggered
execution issues in the CPU path.

The problem is that, given a `memref<?x4x?x8x?xf32>`, the expressions to
construct the dynamic dimensions should be:
`dim %arg, 0 : memref<?x4x?x8x?xf32>`
`dim %arg, 2 : memref<?x4x?x8x?xf32>`
and
`dim %arg, 4 : memref<?x4x?x8x?xf32>`

Before this CL, we wold construct:
`dim %arg, 0 : memref<?x4x?x8x?xf32>`
`dim %arg, 1 : memref<?x4x?x8x?xf32>`
`dim %arg, 2 : memref<?x4x?x8x?xf32>`

and expect the other dimensions to be constants.
This assumption seems consistent at first glance with the syntax of alloc:

```
    %tensor = alloc(%M, %N, %O) : memref<?x4x?x8x?xf32>
```

But this was actuallyincorrect.

This CL also makes the relevant functions available to EDSCs and removes
duplication of the incorrect function.

PiperOrigin-RevId: 229622766
2019-03-29 15:24:13 -07:00
Nicolas Vasilache
424041ad58 Add EDSC sugar
This allows load, store and ForNest to be used with both Expr and Bindable.
This simplifies writing generic pieces of MLIR snippet.

For instance, a generic pointwise add can now be written:

```cpp
// Different Bindable ivs, one per loop in the loop nest.
auto ivs = makeBindables(shapeA.size());
Bindable zero, one;
// Same bindable, all equal to `zero`.
SmallVector<Bindable, 8> zeros(ivs.size(), zero);
// Same bindable, all equal to `one`.
SmallVector<Bindable, 8> ones(ivs.size(), one);
// clang-format off
Bindable A, B, C;
Stmt scalarA, scalarB, tmp;
Stmt block = edsc::Block({
  ForNest(ivs, zeros, shapeA, ones, {
    scalarA = load(A, ivs),
    scalarB = load(B, ivs),
    tmp = scalarA + scalarB,
    store(tmp, C, ivs)
  }),
});
// clang-format on
```

This CL also adds some extra support for pretty printing that will be used in
a future CL when we introduce standalone testing of EDSCs. At the momen twe
are lacking the basic infrastructure to write such tests.

PiperOrigin-RevId: 229375850
2019-03-29 15:16:53 -07:00
Nicolas Vasilache
d734c50c5f [MLIR] Clip all access dimensions during LowerVectorTransfers
This CL adds a short term remedy to an issue that was found during execution
tests.

Lowering of vector transfer ops uses the permutation map to determine which
ForInst have been super-vectorized. During materialization to HW vector sizes
however, some of those dimensions may be fully unrolled and do not appear in
the permutation map.
Such dimensions were then not clipped and may have accessed out of bounds.

This CL conservatively clips all dimensions to ensure no out of bounds access.
The longer term solution is still up for debate but will probably require
either passing more information between Materialization and lowering, or just
merging the 2 passes.

PiperOrigin-RevId: 228980787
2019-03-29 15:12:26 -07:00
Nicolas Vasilache
73f5c9c380 [MLIR] Sketch a simple set of EDSCs to declaratively write MLIR
This CL introduces a simple set of Embedded Domain-Specific Components (EDSCs)
in MLIR components:
1. a `Type` system of shell classes that closely matches the MLIR type system. These
types are subdivided into `Bindable` leaf expressions and non-bindable `Expr`
expressions;
2. an `MLIREmitter` class whose purpose is to:
  a. maintain a map of `Bindable` leaf expressions to concrete SSAValue*;
  b. provide helper functionality to specify bindings of `Bindable` classes to
     SSAValue* while verifying comformable types;
  c. traverse the `Expr` and emit the MLIR.

This is used on a concrete example to implement MemRef load/store with clipping in the
LowerVectorTransfer pass. More specifically, the following pseudo-C++ code:
```c++
MLFuncBuilder *b = ...;
Location location = ...;
Bindable zero, one, expr, size;
// EDSL expression
auto access = select(expr < zero, zero, select(expr < size, expr, size - one));
auto ssaValue = MLIREmitter(b)
    .bind(zero, ...)
    .bind(one, ...)
    .bind(expr, ...)
    .bind(size, ...)
    .emit(location, access);
```
is used to emit all the MLIR for a clipped MemRef access.

This simple EDSL can easily be extended to more powerful patterns and should
serve as the counterpart to pattern matchers (and could potentially be unified
once we get enough experience).

In the future, most of this code should be TableGen'd but for now it has
concrete valuable uses: make MLIR programmable in a declarative fashion.

This CL also adds Stmt, proper supporting free functions and rewrites
VectorTransferLowering fully using EDSCs.

The code for creating the EDSCs emitting a VectorTransferReadOp as loops
with clipped loads is:

```c++
  Stmt block = Block({
    tmpAlloc = alloc(tmpMemRefType),
    vectorView = vector_type_cast(tmpAlloc, vectorMemRefType),
    ForNest(ivs, lbs, ubs, steps, {
      scalarValue = load(scalarMemRef, accessInfo.clippedScalarAccessExprs),
      store(scalarValue, tmpAlloc, accessInfo.tmpAccessExprs),
    }),
    vectorValue = load(vectorView, zero),
    tmpDealloc = dealloc(tmpAlloc.getLHS())});
  emitter.emitStmt(block);
```

where `accessInfo.clippedScalarAccessExprs)` is created with:

```c++
select(i + ii < zero, zero, select(i + ii < N, i + ii, N - one));
```

The generated MLIR resembles:

```mlir
    %1 = dim %0, 0 : memref<?x?x?x?xf32>
    %2 = dim %0, 1 : memref<?x?x?x?xf32>
    %3 = dim %0, 2 : memref<?x?x?x?xf32>
    %4 = dim %0, 3 : memref<?x?x?x?xf32>
    %5 = alloc() : memref<5x4x3xf32>
    %6 = vector_type_cast %5 : memref<5x4x3xf32>, memref<1xvector<5x4x3xf32>>
    for %i4 = 0 to 3 {
      for %i5 = 0 to 4 {
        for %i6 = 0 to 5 {
          %7 = affine_apply #map0(%i0, %i4)
          %8 = cmpi "slt", %7, %c0 : index
          %9 = affine_apply #map0(%i0, %i4)
          %10 = cmpi "slt", %9, %1 : index
          %11 = affine_apply #map0(%i0, %i4)
          %12 = affine_apply #map1(%1, %c1)
          %13 = select %10, %11, %12 : index
          %14 = select %8, %c0, %13 : index
          %15 = affine_apply #map0(%i3, %i6)
          %16 = cmpi "slt", %15, %c0 : index
          %17 = affine_apply #map0(%i3, %i6)
          %18 = cmpi "slt", %17, %4 : index
          %19 = affine_apply #map0(%i3, %i6)
          %20 = affine_apply #map1(%4, %c1)
          %21 = select %18, %19, %20 : index
          %22 = select %16, %c0, %21 : index
          %23 = load %0[%14, %i1, %i2, %22] : memref<?x?x?x?xf32>
          store %23, %5[%i6, %i5, %i4] : memref<5x4x3xf32>
        }
      }
    }
    %24 = load %6[%c0] : memref<1xvector<5x4x3xf32>>
    dealloc %5 : memref<5x4x3xf32>
```

In particular notice that only 3 out of the 4-d accesses are clipped: this
corresponds indeed to the number of dimensions in the super-vector.

This CL also addresses the cleanups resulting from the review of the prevous
CL and performs some refactoring to simplify the abstraction.

PiperOrigin-RevId: 227367414
2019-03-29 14:50:23 -07:00
Chris Lattner
dffc589ad2 Extend InstVisitor and Walker to handle arbitrary CFG functions, expand the
Function::walk functionality into f->walkInsts/Ops which allows visiting all
instructions, not just ops.  Eliminate Function::getBody() and
Function::getReturn() helpers which crash in CFG functions, and were only kept
around as a bridge.

This is step 25/n towards merging instructions and statements.

PiperOrigin-RevId: 227243966
2019-03-29 14:46:58 -07:00
Chris Lattner
456ad6a8e0 Standardize naming of statements -> instructions, revisting the code base to be
consistent and moving the using declarations over.  Hopefully this is the last
truly massive patch in this refactoring.

This is step 21/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227178245
2019-03-29 14:44:30 -07:00
Chris Lattner
315a466aed Rename BasicBlock and StmtBlock to Block, and make a pass cleaning it up. I did not make an effort to rename all of the 'bb' names in the codebase, since they are still correct and any specific missed once can be fixed up on demand.
The last major renaming is Statement -> Instruction, which is why Statement and
Stmt still appears in various places.

This is step 19/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227163082
2019-03-29 14:43:58 -07:00
Chris Lattner
69d9e990fa Eliminate the using decls for MLFunction and CFGFunction standardizing on
Function.

This is step 18/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227139399
2019-03-29 14:43:13 -07:00
Chris Lattner
d798f9bad5 Rename BBArgument -> BlockArgument, Op::getOperation -> Op::getInst(),
StmtResult -> InstResult, StmtOperand -> InstOperand, and remove the old names.

This is step 17/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227121537
2019-03-29 14:42:40 -07:00
Chris Lattner
5187cfcf03 Merge Operation into OperationInst and standardize nomenclature around
OperationInst.  This is a big mechanical patch.

This is step 16/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227093712
2019-03-29 14:42:23 -07:00
Chris Lattner
4c05f8cac6 Merge CFGFuncBuilder/MLFuncBuilder/FuncBuilder together into a single new
FuncBuilder class.  Also rename SSAValue.cpp to Value.cpp

This is step 12/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227067644
2019-03-29 14:40:22 -07:00
Chris Lattner
3f190312f8 Merge SSAValue, CFGValue, and MLValue together into a single Value class, which
is the new base of the SSA value hierarchy.  This CL also standardizes all the
nomenclature and comments to use 'Value' where appropriate.  This also eliminates a large number of cast<MLValue>(x)'s, which is very soothing.

This is step 11/n towards merging instructions and statements, NFC.

PiperOrigin-RevId: 227064624
2019-03-29 14:40:06 -07:00