In DAGTypeLegalizer::SetSplitVector I have changed calls in the assert
from getVectorNumElements() to getVectorElementCount(), since this
code path works for both fixed and scalable vectors.
This fixes up one warning in the test:
sve-sext-zext.ll
Differential Revision: https://reviews.llvm.org/D83196
This patch replaces some invalid calls to getVectorNumElements() with calls
to getVectorMinNumElements() instead, since the code paths changed in this
patch work for both fixed and scalable vector types.
Fixes warnings in this test:
sve-sext-zext.ll
Differential Revision: https://reviews.llvm.org/D83203
Since the `RISCVExpandPseudo` pass has been split from
`RISCVExpandAtomicPseudo` pass, it would be nice to run the former as
early as possible (The latter has to be run as late as possible to
ensure correctness). Running earlier means we can reschedule these pairs
as we see fit.
Running earlier in the machine pass pipeline is good, but would mean
teaching many more passes about `hasLabelMustBeEmitted`. Splitting the
basic blocks also pessimises possible optimisations because some
optimisations are MBB-local, and others are disabled if the block has
its address taken (which is notionally what `hasLabelMustBeEmitted`
means).
This patch uses a new approach of setting the pre-instruction symbol on
the AUIPC instruction to a temporary symbol and referencing that. This
avoids splitting the basic block, but allows us to reference exactly the
instruction that we need to. Notionally, this approach seems more
correct because we do actually want to address a specific instruction.
This then allows the pass to be moved much earlier in the pass pipeline,
before both scheduling and register allocation. However, to do so we
must leave the MIR in SSA form (by not redefining registers), and so use
a virtual register for the intermediate value. By using this virtual
register, this pass now has to come before register allocation.
Reviewed By: luismarques, asb
Differential Revision: https://reviews.llvm.org/D82988
Summary:
When legalizing a biscast operation from an fp16 operand to an i16 on a
target that requires both input and output types to be promoted to
32-bits, an assertion can fail when building the new node due to a
mismatch between the the operation's result size and the type specified to
the node.
This patches fix the issue by making sure the bit width of the types
match for the FP_TO_FP16 node, covering the difference with an extra
ANYEXTEND operation.
Reviewers: ostannard, efriedma, pirama, jmolloy, plotfi
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82552
This should be a typo introduced in D69275, which may cause an unknown
segment fault in getNode.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D83376
9cac4e6d1403554b06ec2fc9d834087b1234b695/D32628 intended to eliminate
this, and move all isel pseudo expansion to FinalizeISel. This was a
bad rebase or something, and failed to actually delete this call.
GlobalISel also has a redundant call of finalizeLowering. However, it
requires more work to remove it since it currently triggers a lot of
verifier errors in tests.
It looks like 9cac4e6d14 accidentally
added a second copy of this from a bad rebase or something. This
second copy was added, and the finalizeLowering call was not deleted
as intended.
Updated the AArch64 tests the best I could with my vague, inferred
understanding of AArch64 register banks. As far as I can tell, there
is only one 32-bit/64-bit type which will use the gpr register bank,
so we have to use the fpr bank for the other operand.
This removes existing code duplication and allows us to
assert that we are handling the expected cases.
We have a list of outstanding bugs that could benefit by
handling truncated source values, so that's a possible
addition going forward.
ExpandVectorBuildThroughStack is also used for CONCAT_VECTORS.
However, when calculating the offsets for each of the operands we
incorrectly use the element size rather than actual size and thus
the stores overlap.
Differential Revision: https://reviews.llvm.org/D83303
Summary:
The following combine currently breaks in the DAGCombiner:
```
extract_vector_elt (concat_vectors v4i16:a, v4i16:b), x
-> extract_vector_elt a, x
```
This happens because after we have combined these nodes we have inserted nodes
that use individual instances of the vector element type. In the above example
i16. However this isn't a legal type on all backends, and when the combining pass calls
the legalizer it breaks as it expects types to already be legal. The type legalizer has
already been run, and running it again would make a mess of the nodes.
In the example code at least, the generated code is still efficient after the change.
Reviewers: miyuki, arsenm, dmgreen, lebedev.ri
Reviewed By: miyuki, lebedev.ri
Subscribers: lebedev.ri, wdng, hiraditya, steven.zhang, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83231
Occasionally we see absolutely massive basic blocks, typically in global
constructors that are vulnerable to heavy inlining. When these blocks are
dense with DBG_VALUE instructions, we can hit near quadratic complexity in
DwarfDebug's validThroughout function. The problem is caused by:
* validThroughout having to step through all instructions in the block to
examine their lexical scope,
* and a high proportion of instructions in that block being DBG_VALUEs
for a unique variable fragment,
Leading to us stepping through every instruction in the block, for (nearly)
each instruction in the block.
By adding this guard, we force variables in large blocks to use a location
list rather than a single-location expression, as shown in the added test.
This shouldn't change the meaning of the output DWARF at all: instead we
use a less efficient DWARF encoding to avoid a poor-performance code path.
Differential Revision: https://reviews.llvm.org/D83236
In DAGTypeLegalizer::SplitVecRes_ExtendOp I have replaced an invalid
call to getVectorNumElements() with a call to getVectorMinNumElements(),
since the code path works for both fixed and scalable vectors.
This fixes up a warning in the following test:
sve-sext-zext.ll
Differential Revision: https://reviews.llvm.org/D83197
Calling getVectorNumElements() is not safe for scalable vectors and we
should normally use getVectorElementCount() instead. However, for the
code changed in this patch I decided to simply move the instantiation of
the variable 'OutNumElems' lower down to the place where only fixed-width
vectors are used, and hence it is safe to call getVectorNumElements().
Fixes up one warning in this test:
sve-sext-zext.ll
Differential Revision: https://reviews.llvm.org/D83195
For the GetElementPtr case in function
AddressingModeMatcher::matchOperationAddr
I've changed the code to use the TypeSize class instead of relying
upon the implicit conversion to a uint64_t. As part of this we now
check for scalable types and if we encounter one just bail out for
now as the subsequent optimisations doesn't currently support them.
This changes fixes up all warnings in the following tests:
llvm/test/CodeGen/AArch64/sve-ld1-addressing-mode-reg-imm.ll
llvm/test/CodeGen/AArch64/sve-st1-addressing-mode-reg-imm.ll
Differential Revision: https://reviews.llvm.org/D83124
`__stack_chk_fail` does not return, but `unreachable` was not generated
following `call __stack_chk_fail`. This had a possibility to generate an
invalid binary for functions with a return type, because
`__stack_chk_fail`'s return type is void and `call __stack_chk_fail` can
be the last instruction in the function whose return type is non-void.
Generating `unreachable` after it makes sure CFGStackify's
`fixEndsAtEndOfFunction` handles it correctly.
Reviewed By: tlively
Differential Revision: https://reviews.llvm.org/D83277
handleAssignments was assuming every argument type is an MVT, and
assignArg would always fail. This fixes one of the hacks in the
current AMDGPU calling convention code that pre-processes the
arguments.
This is inspired by D81648. The basic idea is to have the set of SDValues which are lowered as either constants or direct frame references explicit in one place, and to separate them clearly from the spilling logic.
This is not NFC in that the handling of constants larger than > 64 bit has changed. The old lowering would crash on values which could not be encoded as a sign extended 64 bit value. The new lowering just spills all constants > 64 bits. We could be consistent about doing the sext(Con64) optimization, but I happen to know that this code path is utterly unexercised in practice, so simple is better for now.
handleMoveDown or handleMoveUp cannot properly repair a main
range of a LiveInterval since they only get LiveRange. There
is a problem if certain use has moved few segments away and
there is a hole in the main range in between of these two
locations. We may get a SubRange with a very extended Segment
spanning several Segments of the main range and also spanning
that hole. If that happens then we end up with the main range
not covering its SubRange which is an error.
It might be possible to attempt fixing the main range in place
just between of the old and new index by extending all of its
Segments in between, but it is unclear this logic will be
faster than just straight constructMainRangeFromSubranges,
which itself is pretty cheap since it only contains interval
logic. That will also require shrinkToUses() call after which
is probably even more expensive.
In the test second move is from 64B to 92B for the sub1.
Subrange is correctly fixed:
L000000000000000C [16r,32B:0)[32B,92r:1) 0@16r 1@32B-phi
But the main range has a hole in between 80d and 88r after
updateRange():
%1 [16r,32B:0)[32B,80r:4)[80r,80d:3)[88r,96r:1)[96r,160B:2)
Since source position is 64B this segment is not even considered
by the updateRange().
Differential Revision: https://reviews.llvm.org/D82916
Summary:
When splitting a store of a scalable type, the new address is
calculated in SplitVecOp_STORE using a vscale and an add instruction.
Reviewers: sdesmalen, efriedma, david-arm
Reviewed By: david-arm
Subscribers: tschuett, hiraditya, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83041
Summary:
When splitting a load of a scalable type, the new address is
calculated in SplitVecRes_LOAD using a vscale and an add instruction.
This patch also adds a DAG combiner fold to visitADD for vscale:
- Fold (add (vscale(C0)), (vscale(C1))) to (add (vscale(C0 + C1)))
Reviewers: sdesmalen, efriedma, david-arm
Reviewed By: david-arm
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82792
In an earlier commit 584d0d5c17 I
added functionality to allow AArch64 CodeGen support for falling
back to DAG ISel when Global ISel encounters scalable vector
types. However, it seems that we were not falling back early
enough as llvm::getLLTForType was still being invoked for scalable
vector types.
I've added a new fallback function to the call lowering class in
order to catch this problem early enough, rather than wait for
lowerFormalArguments to reject scalable vector types.
Differential Revision: https://reviews.llvm.org/D82524
This patch fixes all remaining warnings in:
llvm/test/CodeGen/AArch64/sve-trunc.ll
llvm/test/CodeGen/AArch64/sve-vector-splat.ll
I hit some warnings related to getCopyPartsToVector. I fixed two
issues:
1. In widenVectorToPartType() we assumed that we'd always be
using BUILD_VECTOR nodes to expand from one vector type to another,
which is incorrect for scalable vector types. I've fixed this for now
by simply bailing out immediately for scalable vectors.
2. In getCopyToPartsVector() I've changed the code to compare
the element counts of different types.
Differential Revision: https://reviews.llvm.org/D83028
X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
In the motivating case from PR46406:
https://bugs.llvm.org/show_bug.cgi?id=46406
...this is restoring the sequence that was originally in the source code.
We extracted a term from within the sqrt because we do not know in
instcombine whether a target will expand a sqrt call.
Note: we could say that the transform in IR should be restricted, but
that would not solve the problem if the source was originally in the
pattern shown here.
This is a gray area for fast-math-flag requirements. I think we should at
least check fast-math-flags on the fdiv and fmul because I view this
transform as 2 pieces: reassociate the fmul operands and form reciprocal
from the fdiv (as with the existing transform). We could argue that the
sqrt also needs FMF, but that was not required before, so we should change
that in a follow-up patch if that seems better.
We don't currently have a way to check that the target will produce a sqrt
or recip estimate without actually creating nodes (the APIs are SDValue
getSqrtEstimate() and SDValue getRecipEstimate()), so we clean up
speculatively created nodes if we are not able to create an estimate.
The x86 test with doubles verifies that we are not changing a test with
no estimate sequence.
Differential Revision: https://reviews.llvm.org/D82716
Summary:
Avoid exposing details about how children are stored. This will enable
subsequent type-erasure changes.
New methods are introduced to cover common access patterns.
Change-Id: Idb5f4b1b9c84e4cc71ddb39bb52a388682f5674f
Reviewers: arsenm, RKSimon, mehdi_amini, courbet
Subscribers: qcolombet, sdardis, wdng, hiraditya, jrtc27, zzheng, atanasyan, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83083
Summary:
When a desired symbol name contains invalid character that the
system assembler could not process, we need to emit .rename
directive in assembly path in order for that desired symbol name
to appear in the symbol table.
Reviewed By: hubert.reinterpretcast, DiggerLin, daltenty, Xiangling_L
Differential Revision: https://reviews.llvm.org/D82481
This matches the DAG behavior where this is called after the loop
checking for calls. The AMDGPU implementation depends on knowing if
there are calls in the function or not, so move this later.
Another problem is finalizeLowering is actually called twice; I was
seeing weird inconsistencies since the first call would produce
unexpected results and the second run would correct them in some
contexts. Since this requires disabling the verifier, and it's useful
to serialize the MIR immediately after selection, FinalizeISel should
probably not be a real pass.
Use a simpler code sequence when the shift amount is known not to be
zero modulo the bit width.
Nothing much uses this until D77152 changes the translation of fshl and
fshr intrinsics.
Differential Revision: https://reviews.llvm.org/D82540
Using a negation instead of a subtraction from a constant can save an
instruction on some targets.
Nothing much uses this until D77152 changes the translation of fshl and
fshr intrinsics.
Differential Revision: https://reviews.llvm.org/D82539
We need to ensure that the sign bits of the result all match
so we can't fold to undef.
Similar to PR46585.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D83163
zext_vector_inreg needs to produces 0s in the extended bits and
sext_vector_inreg needs to produce upper bits that are all the
same. So we should fold them to a 0 vector instead of undef.
Fixes PR46585.
Currently matchBinOpReduction only handles shufflevector reduction patterns, but in many cases these only occur in the final stages of a reduction, once we're down to legal vector widths.
Before this its likely that we are performing reductions using subvector extractions to repeatedly split the source vector in half and perform the binop on the halves.
Assuming we've found a non-partial reduction, this patch continues looking for subvector reductions as far as it can beyond the last shufflevector.
Fixes PR37890
Given a loop with two subloops, it should be possible for both to be
converted to hardware loops. That's what this patch does, simply enough.
It slightly alters the loop iterating order to try and convert all
subloops. If one (or more) succeeds, it stops as before.
Differential Revision: https://reviews.llvm.org/D78502