Currently the DomTree is not kept up to date for additional blocks
generated in the vector loop, for example when vectorizing with
predication. SCEVExpander relies on dominance checks when looking for
existing instructions to re-use and in some cases that can lead to the
expander picking instructions that do not actually dominate their insert
point (e.g. as in PR46525).
Unfortunately keeping the DT up-to-date is a bit tricky, because the CFG
is only patched up after generating code for a block. For now, we can
just use the vector loop header, as this ensures the inserted
instructions dominate all uses in the vector loop. There should be no
noticeable impact on the generated code, as other passes should sink
those instructions, if profitable.
Fixes PR46525.
Reviewers: Ayal, gilr, mkazantsev, dmgreen
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D83288
If a loop is in a function marked OptSize, Loop Access Analysis should refrain
from generating runtime checks for unit strides that will version the loop.
If a loop is in a function marked OptSize and its vectorization is enabled, it
should be vectorized w/o any versioning.
Fixes PR46228.
Differential Revision: https://reviews.llvm.org/D81345
This adjusts the MVE fp16 cost model, similar to how we already do for
integer casts. It uses the base cost of 1 per cvt for most fp extend /
truncates, but adjusts it for loads and stores where we know that a
extending load has been used to get the load into the correct lane, and
only an MVE VCVTB is then needed.
Differential Revision: https://reviews.llvm.org/D81813
This alters getMemoryOpCost to use the Base TargetTransformInfo version
that includes some additional checks for whether extending loads are
legal. This will generally have the effect of making <2 x ..> and some
<4 x ..> loads/stores more expensive, which in turn should help favour
larger vector factors.
Notably it alters the cost of a <4 x half>, which with the current
codegen will be expensive if it is not extended.
Differential Revision: https://reviews.llvm.org/D82456
This patch enables the LoopVectorizer to build a phi of pointer
type and provide the vector loads and stores with vector type
getelementptrs built from the pointer induction variable, which
produces much less instructions than the previous approach of
creating scalar getelementpointers and glue them together to a
vector.
Differential Revision: https://reviews.llvm.org/D81267
D79164/2596da31740f changed getCFInstrCost to return 1 per default.
AArch64 did not have its own implementation, hence the throughput cost
of CFI instructions is overestimated. On most cores, most branches should
be predicated and essentially free throughput wise.
This restores a 9% performance regression on a SPEC2006 benchmark on
AArch64 with -O3 LTO & PGO.
This patch effectively restores pre 2596da3174 behavior for AArch64
and undoes the AArch64 test changes of the patch.
Reviewers: samparker, dmgreen, anemet
Reviewed By: samparker
Differential Revision: https://reviews.llvm.org/D82755
This emits new IR intrinsic @llvm.get.active.mask for tail-folded vectorised
loops if the intrinsic is supported by the backend, which is checked by
querying TargetTransform hook emitGetActiveLaneMask.
This intrinsic creates a mask representing active and inactive vector lanes,
which is used by the masked load/store instructions that are created for
tail-folded loops. The semantics of @llvm.get.active.mask are described here in
LangRef:
https://llvm.org/docs/LangRef.html#llvm-get-active-lane-mask-intrinsics
This intrinsic is also used to provide a hint to the backend. That is, the
second argument of the intrinsic represents the back-edge taken count of the
loop. For MVE, for example, we use that to set up tail-predication, which is a
new form of predication in MVE for vector loops that implicitely predicates the
last vector loop iteration by implicitely setting active/inactive lanes, i.e.
the tail loop is predicated. In order to set up a tail-predicated vector loop,
we need to know the number of data elements processed by the vector loop, which
corresponds the the tripcount of the scalar loop, which we can now reconstruct
using @llvm.get.active.mask.
Differential Revision: https://reviews.llvm.org/D79100
Have BasicTTI call the base implementation so that both agree on the
default behaviour, which the default being a cost of '1'. This has
required an X86 specific implementation as it seems to be very
reliant on those instructions being free. Changes are also made to
AMDGPU so that their implementations distinguish between cost kinds,
so that the unrolling isn't affected. PowerPC also has its own
implementation to prevent changes to the reg-usage vectorizer test.
The cost model test changes now reflect that ret instructions are not
generally free.
Differential Revision: https://reviews.llvm.org/D79164
Alternative approach to D80570.
canCheckPtrAtRT already contains checks the figure out for which alias
sets runtime checks are needed. But it currently sets CanDoRT to false
for alias sets for which we cannot do RT checks but also do not need
any.
If we know that we do not need RT checks based on the number of
reads/writes in the alias set, we can skip processing the AS.
This patch also adds an assertion to ensure that DepCands does not
contain more than one write from the alias set.
Reviewers: Ayal, anemet, hfinkel, dmgreen
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D80622
Similar to a recent change to the X86 backend, this changes things so
that we always produce a reduction intrinsics for all reduction types,
not just the legal ones. This gives a better chance in the backend to
custom lower them to something more suitable for MVE. Especially for
something like fadd the in-order reduction produced during DAG lowering
is already better than the shuffles produced in the midend, and we can
do even better with a bit of custom lowering.
Differential Revision: https://reviews.llvm.org/D81398
getOrCreateTripCount is used to generate code for the outer loop, but it
requires a computable backedge taken counts. Check that in the VPlan
native path.
Reviewers: Ayal, gilr, rengolin, sguggill
Reviewed By: sguggill
Differential Revision: https://reviews.llvm.org/D81088
Motivating examples are seen in the PhaseOrdering tests based on:
https://bugs.llvm.org/show_bug.cgi?id=43953#c2 - if we have
intrinsics there, some pass can fold them.
The intrinsics are still named "experimental" at this point, but
if there is no fallout from this patch, that will be a good
indicator that it is safe to finalize them.
Differential Revision: https://reviews.llvm.org/D80867
LV currently only supports power of 2 vectorization factors, which has
been made explicit with the assertion added in
840450549c.
However, if the widest type is not a power-of-2 the computed MaxVF won't
be a power-of-2 either. This patch updates computeFeasibleMaxVF to
ensure the returned value is a power-of-2 by rounding down to the
nearest power-of-2.
Fixes PR46139.
Reviewers: Ayal, gilr, rengolin
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D80870
The -reassociate pass tends to transform this kind of pattern into
something that is worse for vectorization and codegen. See PR43953:
https://bugs.llvm.org/show_bug.cgi?id=43953
Follows-up the FP version of the same transform:
rGa0ce2338a083
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
If a loop has a constant trip count known to be a multiple of MaxVF (times user
UF), LV infers that no tail will be generated for any chosen VF. This relies on
the chosen VF's being powers of 2 bound by MaxVF, and assumes MaxVF is a power
of 2. Make sure the latter holds, in particular when MaxVF is set by a memory
dependence distance which may not be a power of 2.
Differential Revision: https://reviews.llvm.org/D80491
Currently we unconditionally get the first lane of the condition
operand, even if we later use the full vector condition. This can result
in some unnecessary instructions being generated.
Suggested as follow-up in D80219.
Summary:
When handling loops whose VF is 1, fold-tail vectorization sets the
backedge taken count of the original loop with a vector of a single
element. This causes type-mismatch during instruction generartion.
The purpose of this patch is toto address the case of VF==1.
Reviewer: Ayal (Ayal Zaks), bmahjour (Bardia Mahjour), fhahn (Florian Hahn), gilr (Gil Rapaport), rengolin (Renato Golin)
Reviewed By: Ayal (Ayal Zaks), bmahjour (Bardia Mahjour), fhahn (Florian Hahn)
Subscribers: Ayal (Ayal Zaks), rkruppe (Hanna Kruppe), bmahjour (Bardia Mahjour), rogfer01 (Roger Ferrer Ibanez), vkmr (Vineet Kumar), bollu (Siddharth Bhat), hiraditya (Aditya Kumar), llvm-commits (Mailing List llvm-commits)
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D79976
LV considers an internally computed MaxVF to decide if a constant trip-count is
a multiple of any subsequently chosen VF, and conclude that no scalar remainder
iterations (tail) will be left for Fold Tail to handle. If an external VF is
provided via -force-vector-width, it must be considered instead of the internal
MaxVF.
If an external UF is provided via -force-vector-interleave, it too must be
considered in addition to MaxVF or user VF.
Fixes PR45679.
Differential Revision: https://reviews.llvm.org/D80085
For IR generated by a compiler, this is really simple: you just take the
datalayout from the beginning of the file, and apply it to all the IR
later in the file. For optimization testcases that don't care about the
datalayout, this is also really simple: we just use the default
datalayout.
The complexity here comes from the fact that some LLVM tools allow
overriding the datalayout: some tools have an explicit flag for this,
some tools will infer a datalayout based on the code generation target.
Supporting this properly required plumbing through a bunch of new
machinery: we want to allow overriding the datalayout after the
datalayout is parsed from the file, but before we use any information
from it. Therefore, IR/bitcode parsing now has a callback to allow tools
to compute the datalayout at the appropriate time.
Not sure if I covered all the LLVM tools that want to use the callback.
(clang? lli? Misc IR manipulation tools like llvm-link?). But this is at
least enough for all the LLVM regression tests, and IR without a
datalayout is not something frontends should generate.
This change had some sort of weird effects for certain CodeGen
regression tests: if the datalayout is overridden with a datalayout with
a different program or stack address space, we now parse IR based on the
overridden datalayout, instead of the one written in the file (or the
default one, if none is specified). This broke a few AVR tests, and one
AMDGPU test.
Outside the CodeGen tests I mentioned, the test changes are all just
fixing CHECK lines and moving around datalayout lines in weird places.
Differential Revision: https://reviews.llvm.org/D78403
This was reverted because of a miscompilation. At closer inspection, the
problem was actually visible in a changed llvm regression test too. This
one-line follow up fix/recommit will splat the IV, which is what we are trying
to avoid if unnecessary in general, if tail-folding is requested even if all
users are scalar instructions after vectorisation. Because with tail-folding,
the splat IV will be used by the predicate of the masked loads/stores
instructions. The previous version omitted this, which caused the
miscompilation. The original commit message was:
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
- Specifically check for sext/zext users which have 'long' form NEON
instructions.
- Add more entries to the table for sext/zexts so that we can report
more accurately the number of vmovls required for NEON.
- Pass the instruction to the pass implementation.
Differential Revision: https://reviews.llvm.org/D79561
If tail-folding of the scalar remainder loop is applied, the primary induction
variable is splat to a vector and used by the masked load/store vector
instructions, thus the IV does not remain scalar. Because we now mark
that the IV does not remain scalar for these cases, we don't emit the vector IV
if it is not used. Thus, the vectoriser produces less dead code.
Thanks to Ayal Zaks for the direction how to fix this.
Differential Revision: https://reviews.llvm.org/D78911
The improvements to the x86 vector insert/extract element costs in D74976 resulted in the estimated costs for vector initialization and scalarization increasing higher than should be expected. This is particularly noticeable on pre-SSE4 targets where the available of legal INSERT_VECTOR_ELT ops is more limited.
This patch does 2 things:
1 - it implements X86TTIImpl::getScalarizationOverhead to more accurately represent the typical costs of a ISD::BUILD_VECTOR pattern.
2 - it adds a DemandedElts mask to getScalarizationOverhead to permit the SLP's BoUpSLP::getGatherCost to be rewritten to use it directly instead of accumulating raw vector insertion costs.
This fixes PR45418 where a v4i8 (zext'd to v4i32) was no longer vectorizing.
A future patch should extend X86TTIImpl::getScalarizationOverhead to tweak the EXTRACT_VECTOR_ELT scalarization costs as well.
Reviewed By: @craig.topper
Differential Revision: https://reviews.llvm.org/D78216
The crash that caused the original revert has been fixed in
a3c964a278. I also added a reduced version of the crash reproducer.
This reverts the revert commit 2107af9ccf.
When folding tail, branch taken count is computed during initial VPlan execution
and recorded to be used by the compare computing the loop's mask. This recording
should directly set the State, instead of reusing Value2VPValue mapping which
serves original Values present prior to vectorization.
The branch taken count may be a constant Value, which may be used elsewhere in
the loop; trying to employ Value2VPValue for both leads to the issue reported in
https://reviews.llvm.org/D76992#inline-721028
Differential Revision: https://reviews.llvm.org/D78847
One of transforms the loop vectorizer makes is LCSSA formation. In some cases it
is the only transform it makes. We should not drop CFG analyzes if only LCSSA was
formed and no actual CFG changes was made.
We should think of expanding this logic to other passes as well, and maybe make
it a part of PM framework.
Reviewed By: Florian Hahn
Differential Revision: https://reviews.llvm.org/D78360
This will allow us to use the datalayout to disambiguate other
constructs in IR, like load alignment. Split off from D78403.
Differential Revision: https://reviews.llvm.org/D78413