Remove Debugger::GetOutputStream and Debugger::GetErrorStream in
preparation for replacing both with a new variant that needs to be
locked and hence can't be handed out like we do right now.
The patch replaces most uses with GetAsyncOutputStream and
GetAsyncErrorStream respectively. There methods return new StreamSP
objects that automatically get flushed on destruction.
See #126630 for more details.
Nobody is overriding GetValueProperties, so in practice we're always
using `m_collection_sp`, which means we don't need to check the pointer.
The temlated helpers were already operating on `m_collection_sp`
directly so this makes the rest of the class consistent.
A new callback was added with the type
CommandReturnObjectCallbackResult, this commit namespaces that type to
match the format of other callback functions that have a non-primitive
return type in the lldb namespace.
rdar://144553496
Details:
- This is a subset of PR/98528.( Pavel's suggestion was to split up the
patch to make reviewing easier)
- This contains only the concrete implementation of the framework to be
used but no usages yet.
- I plan to send a few follow-up patches:
+ part2 : includes changes in the plugin-manager to set up the plugin
stuff (ie., how to create a default vs vendor impl)
+ part3 (all of the following can be done in parallel):
* part 3_a: define DebuggerTelemetryInfo and related methods to collect
data about debugger startup/exit
* part 3_b: define TargetTelemetryInfo and related methods to collect
data about debug target(s)
* part 3_c: define CommandTelemetryInfo and related methods to collect
data about debug-commands
* part 3_d: define ClientTelemtryInfo and related methods to collect
data about lldb-dap/any other client
---------
Co-authored-by: Pavel Labath <pavel@labath.sk>
Co-authored-by: Jonas Devlieghere <jonas@devlieghere.com>
PR #86603 broke unwinding in for unwind info added via "target symbols
add". #86770 attempted to fix this, but the fix was only partial -- it
accepted new sources of unwind information, but didn't take into account
that the symbol file can alter what lldb percieves as function
boundaries.
A stripped file will not contain information about private
(non-exported) symbols, which will make the public symbols appear very
large. If lldb tries to unwind from such a function before symbols are
added, then the cached unwind plan will prevent new (correct) unwind
plans from being created.
target-symbols-add-unwind.test might have caught this, were it not for
the fact that the "image show-unwind" command does *not* use cached
unwind information (it recomputes it from scratch).
The changes in this patch come in three pieces:
- Clear cached unwind plans when adding symbols. Since the symbol
boundaries can change, we cannot trust anything we've computed
previously.
- Add a flag to "image show-unwind" to display the cached unwind
information (mainly for the use in the test, but I think it's also
generally useful).
- Rewrite the test to better and more reliably simulate the real-world
scenario: I've swapped the running process for a core (minidump) file so
it can run anywhere; used the caching version of the show-unwind
command; and swapped C for assembly to better control the placement of
symbols
…uffer
ValueObjectDynamicValue::UpdateValue() assumes that the dynamic type
found by GetDynamicTypeAndAddress() would return an address in the
inferior. This commit makes it so it can deal with being passed a host
address instead.
This is needed downstream by the Swift fork.
rdar://143357274
Many uses of SC::GetAddressRange were not interested in the range, but
in the address of the function/symbol contained inside the symbol
context. They were getting that by calling the GetBaseAddress on the
returned range, which worked well enough so far, but isn't compatible
with discontinuous functions, whose address (entry point) may not be the
lowest address in the range.
To resolve this problem, this PR creates a new function whose purpose is
return the address of the function or symbol inside the symbol context.
It also changes all of the callers of GetAddressRange which do not
actually care about the range to call this function instead.
This patch adds the ability to open URLs from lldb on macOS. This can be
a website URL or a deep link to a particular application.
rdar://143327616
Signed-off-by: Med Ismail Bennani <ismail@bennani.ma>
Xcode uses a pseudoterminal for the debugger console.
- The upside of this apporach is that it means that it can rely on
LLDB's IOHandlers for multiline and script input.
- The downside of this approach is that the command output is printed to
the PTY and you don't get a SBCommandReturnObject. Adrian added support
for inline diagnostics (#110901) and we'd like to access those from the
IDE.
This patch adds support for registering a callback in the command
interpreter that gives access to the `(SB)CommandReturnObject` right
before it will be printed. The callback implementation can choose
whether it likes to handle printing the result or defer to lldb. If the
callback indicated it handled the result, the command interpreter will
skip printing the result.
We considered a few other alternatives to solve this problem:
- The most obvious one is using `HandleCommand`, which returns a
`SBCommandReturnObject`. The problem with this approach is the multiline
input mentioned above. We would need a way to tell the IDE that it
should expect multiline input, which isn't known until LLDB starts
handling the command.
- To address the multiline issue,we considered exposing (some of the)
IOHandler machinery through the SB API. To solve this particular issue,
that would require reimplementing a ton of logic that already exists
today in the CommandInterpeter. Furthermore that seems like overkill
compared to the proposed solution.
rdar://141254310
As suggested in #125006. Depending on which PR lands first, I'll update
`TestCommandInterepterPrintCallback.py` to check that the
`CommandReturnObject` passed to the callback has the correct command.
Use `llvm::Error` instead of `CommandReturnObject` for error reporting.
The command return objects were populated with errors but never
displayed. With this patch they're at least logged.
This reverts commit a774de807e.
This is the same changes as last time, plus:
* We load the binary into the target object so that on Windows, we can
resolve the locations of the functions.
* We now assert that each required breakpoint has at least 1 location,
to prevent an issue like that in the future.
* We are less strict about the unsupported error message, because it
prints "error: windows" on Windows instead of "error: gdb-remote".
There's no reason these methods cannot be `const`. Currently this
prevents us from passing around a const ref. This patch is in
preparation for #125006.
Reverts llvm/llvm-project#123945
Has failed on the Windows on Arm buildbot:
https://lab.llvm.org/buildbot/#/builders/141/builds/5865
```
********************
Unresolved Tests (2):
lldb-api :: functionalities/reverse-execution/TestReverseContinueBreakpoints.py
lldb-api :: functionalities/reverse-execution/TestReverseContinueWatchpoints.py
********************
Failed Tests (1):
lldb-api :: functionalities/reverse-execution/TestReverseContinueNotSupported.py
```
Reverting while I reproduce locally.
This reverts commit 22561cfb44 and fixes
b7b9ccf449 (#112079).
The problem is that x86_64 and Arm 32-bit have memory regions above the
stack that are readable but not writeable. First Arm:
```
(lldb) memory region --all
<...>
[0x00000000fffcf000-0x00000000ffff0000) rw- [stack]
[0x00000000ffff0000-0x00000000ffff1000) r-x [vectors]
[0x00000000ffff1000-0xffffffffffffffff) ---
```
Then x86_64:
```
$ cat /proc/self/maps
<...>
7ffdcd148000-7ffdcd16a000 rw-p 00000000 00:00 0 [stack]
7ffdcd193000-7ffdcd196000 r--p 00000000 00:00 0 [vvar]
7ffdcd196000-7ffdcd197000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 --xp 00000000 00:00 0 [vsyscall]
```
Compare this to AArch64 where the test did pass:
```
$ cat /proc/self/maps
<...>
ffffb87dc000-ffffb87dd000 r--p 00000000 00:00 0 [vvar]
ffffb87dd000-ffffb87de000 r-xp 00000000 00:00 0 [vdso]
ffffb87de000-ffffb87e0000 r--p 0002a000 00:3c 76927217 /usr/lib/aarch64-linux-gnu/ld-linux-aarch64.so.1
ffffb87e0000-ffffb87e2000 rw-p 0002c000 00:3c 76927217 /usr/lib/aarch64-linux-gnu/ld-linux-aarch64.so.1
fffff4216000-fffff4237000 rw-p 00000000 00:00 0 [stack]
```
To solve this, look up the memory region of the stack pointer (using
https://lldb.llvm.org/resources/lldbgdbremote.html#qmemoryregioninfo-addr)
and constrain the read to within that region. Since we know the stack is
all readable and writeable.
I have also added skipIfRemote to the tests, since getting them working
in that context is too complex to be worth it.
Memory write failures now display the range they tried to write, and
register write errors will show the name of the register where possible.
The patch also includes a workaround for a an issue where the test code
could mistake an `x` response that happens to begin with an `O` for an
output packet (stdout). This workaround will not be necessary one we
start using the [new
implementation](https://discourse.llvm.org/t/rfc-fixing-incompatibilties-of-the-x-packet-w-r-t-gdb/84288)
of the `x` packet.
---------
Co-authored-by: Pavel Labath <pavel@labath.sk>
I wanted to clarify the semantics around SBProgress. Given the nature of
Progress events, copying seems like the wrong idea. Making SBProgress
move-only (like SBStream) seems like the better choice here.
This is the behavior expected by DWARF. It also requires some fixups to
algorithms which were storing the addresses of some objects (Blocks and
Variables) relative to the beginning of the function.
There are plenty of things that still don't work in this setups, but
this change is sufficient for the expression evaluator to correctly
recognize the entry point of a function in this case.
This commit adds support for a
`SBProcess::ContinueInDirection()` API. A user-accessible command for
this will follow in a later commit.
This feature depends on a gdbserver implementation (e.g. `rr`) providing
support for the `bc` and `bs` packets. `lldb-server` does not support
those packets, and there is no plan to change that. For testing
purposes, this commit adds a Python implementation of *very limited*
record-and-reverse-execute functionality, implemented as a proxy between
lldb and lldb-server in `lldbreverse.py`. This should not (and in
practice cannot) be used for anything except testing.
The tests here are quite minimal but we test that simple breakpoints and
watchpoints work as expected during reverse execution, and that
conditional breakpoints and watchpoints work when the condition calls a
function that must be executed in the forward direction.
Implement ansi::StripAnsiTerminalCodes and fix a long standing bug where
using format strings in lldb's prompt resulted in an incorrect prompt
column width.
Recently I added SBProgress (#119052), and during that original commit I
tested if the progress event was sent over LLDB-DAP, and it was. However
upon the suggestion of @JDevlieghere and @labath we added an external
category (#120171), which I did not test.
This small patch wires up DAP to listen for external events by default,
and adds the external category to the SBDebugger enumeration.
Recently I've been working on a lot of internal Python tooling, and in
certain cases I want to report async to the script over DAP. Progress.h
already handles this, so I've exposed Progress via the SB API so Python
scripts can also update progress objects.
I actually have no idea how to test this, so I just wrote a [toy command
to test
it](https://gist.github.com/Jlalond/48d85e75a91f7a137e3142e6a13d0947)

I also copied the first section of the extensive Progress.h class
documentation to the docstrings.
I think the only issue here was that we would erroneously consider
functions which are "in the middle" of the function were stepping to as
a part of the function, and would try to step into them (likely stepping
out of the function instead) instead of giving up early.
We still have GetDescription and DumpStopContext which serve a similar
purpose.
(The main reason this is bothering me is because I'm working through the
uses of (deprecated) Function::GetAddressRange.)
Currently, an LLDB target option controls whether plugins report all
threads. However, it seems natural for this knowledge could come from
the plugin itself. To support this, this commits adds a virtual method
to the plugin base class, making the Python OS query the target option
to preserve existing behavior.
Rename `lldb_assert` to `_lldb_assert` to make it more obvious that you
shouldn't be using this function directly. Instead, you should use the
`lldbassert` macro which becomes a regular assert in a debug/asserts
build.
This patch adds the ability to get a thread at a give index, based on
insertion order, for SBSaveCore Options. This is primarily to benefit
scripts using SBSaveCore, and remove the need to have both options and a
second collection if your script is tracking what threads need to be
saved. Such as if you want to collect the source of all the threads to
be saved after the Core is generated.
These changes are designed to not change any behavior, but to make it
easy to add code to choose the direction of execution after we've
identified which thread(s) to run but before we add any
`ThreadPlanStepOverBreakpoint`s. And honestly I think they make the
existing code a bit clearer.
The main change is to permit the disassembler class to process/store
multiple (discontinuous) ranges of addresses. The result is not
ambiguous because each instruction knows its size (in addition to its
address), so we can check for discontinuity by looking at whether the
next instruction begins where the previous ends.
This patch doesn't handle the "disassemble" CLI command, which uses a
more elaborate mechanism for disassembling and printing instructions.
Lots of code around LLDB was directly accessing the target's section
load list. This NFC patch makes the section load list private so the
Target class can access it, but everyone else now uses accessor
functions. This allows us to control the resolving of addresses and will
allow for functionality in LLDB which can lazily resolve addresses in
JIT plug-ins with a future patch.
This is intended for use with Arm's Guarded Control Stack extension
(GCS). Which reuses some existing shadow stack support in Linux. It
should also work with the x86 equivalent.
A "ss" flag is added to the "VmFlags" line of shadow stack memory
regions in `/proc/<pid>/smaps`. To keep the naming generic I've called
it shadow stack instead of guarded control stack.
Also the wording is "shadow stack: yes" because the shadow stack region
is just where it's stored. It's enabled for the whole process or it
isn't. As opposed to memory tagging which can be enabled per region, so
"memory tagging: enabled" fits better for that.
I've added a test case that is also intended to be the start of a set of
tests for GCS. This should help me avoid duplicating the inline assembly
needed.
Note that no special compiler support is needed for the test. However,
for the intial enabling of GCS (assuming the libc isn't doing it) we do
need to use an inline assembly version of prctl.
This is because as soon as you enable GCS, all returns are checked
against the GCS. If the GCS is empty, the program will fault. In other
words, you can never return from the function that enabled GCS, unless
you push values onto it (which is possible but not needed here).
So you cannot use the libc's prctl wrapper for this reason. You can use
that wrapper for anything else, as we do to check if GCS is enabled.
Many calls to Function::GetAddressRange() were not interested in the
range itself. Instead they wanted to find the address of the function
(its entry point) or the base address for relocation of function-scoped
entities (technically, the two don't need to be the same, but there's
isn't good reason for them not to be). This PR creates a separate
function for retrieving this, and changes the existing
(non-controversial) uses to call that instead.
This is to support functions whose entry points aren't their lowest
address
(https://discourse.llvm.org/t/rfcish-support-for-discontinuous-functions/83244).
The alternative is to keep blocks relative to the lowest address, but
then introduce a separate concept for the function entry point, which I
think would be more confusing.
This patch just changes the type signedness, it doesn't create any
negative offsets yet. Since combining values with different signs can
sometimes produce unexpected results, and since this is the first use of
RangeVector with a signed type, I'm adding a test to verify that at
least the core functionality works correctly.
As feedback on #119052, it was recommended I add a new bit to delineate
internal and external progress events. This patch adds this new
category, and sets up Progress.h to support external events via
SBProgress.
Summary:
RFC
https://discourse.llvm.org/t/rfc-python-callback-for-source-file-resolution/83545
SBModule will be used for resolve source file callback as Python
function arguments. This diff allows these things.
Can be instantiated from SBPlatform.
Can be passed to/from Python.
Test Plan:
N/A. The next set of diffs in the stack have unittests and shell test
validation
Co-authored-by: Rahul Reddy Chamala <rachamal@fb.com>