(This is D68010 but I also set the new parameter in LibStdcpp.cpp to fix
the Debian tests).
Summary:
Printing a summary for an empty NSPathStore2 string currently prints random bytes behind the empty string pointer from memory (rdar://55575888).
It seems the reason for this is that the SourceSize parameter in the `ReadStringAndDumpToStreamOptions` - which is supposed to contain the string
length - actually uses the length 0 as a magic value for saying "read as much as possible from the buffer" which is clearly wrong for empty strings.
This patch adds another flag that indicates if we have know the string length or not and makes this behaviour dependent on that (which seemingly
was the original purpose of this magic value).
Reviewers: aprantl, JDevlieghere, shafik
Reviewed By: aprantl
Subscribers: christof, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68010
Summary:
TestInlineStepping tests LLDB's ability to step in the presence of
inline frames. The testcase source has a number of functions and some
of them are marked `always_inline`.
The test is built around the assumption that the inline function will
be fully represented once inlined, but this is not true with the
current arm64 code generation. For example:
void caller() {
always_inline_function(); // Step here
}
When stppeing into `caller()` above, you might immediatly end up in
the inlines frame for `always_inline_function()`, because there might
literally be no code associated with `caller()` itself.
This patch hacks around the issue by adding an `asm volatile("nop")`
on some lines with inlined calls where we expect to be able to
step. Like so:
void caller() {
asm volatile("nop"); always_inline_function(); // Step here
}
This guarantees there is always going to be one instruction for this
line in the caller.
Reviewers: labath, jingham
Subscribers: kristof.beyls, danielkiss, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D76406
This reverts commit 939ca455e7.
This failed on the debian bot for some reason:
File "/home/worker/lldb-x86_64-debian/lldb-x86_64-debian/llvm-project/lldb/test/API/functionalities/data-formatter/data-formatter-stl/libstdcpp/string/TestDataFormatterStdString.py", line 67, in test_with_run_command
"s summary wrong")
AssertionError: 'L"hello world! מזל טוב!\\0!\\0!!!!\\0\\0A\\0\\U0000fffd\\U0000fffd\\U0000fffd\\ [truncated]... != 'L"hello world! מזל טוב!"'
Diff is 2156 characters long. Set self.maxDiff to None to see it. : s summary wrong
Summary:
Printing a summary for an empty NSPathStore2 string currently prints random bytes behind the empty string pointer from memory (rdar://55575888).
It seems the reason for this is that the SourceSize parameter in the `ReadStringAndDumpToStreamOptions` - which is supposed to contain the string
length - actually uses the length 0 as a magic value for saying "read as much as possible from the buffer" which is clearly wrong for empty strings.
This patch adds another flag that indicates if we have know the string length or not and makes this behaviour dependent on that (which seemingly
was the original purpose of this magic value).
Reviewers: aprantl, JDevlieghere, shafik
Reviewed By: aprantl
Subscribers: christof, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D68010
The test checks that we correctly set the right number of breakpoints
when breaking into an `always_inline` function. The line of this
funstion selected for this test was the return statement, but with
recent compiler, this return statement doesn't necessarily exist after
inlining, even at O0.
Switch the breakpoint to a different line of the inline function.
The GDB replay server sanity-checks that every packet it receives
matches what it expects from the serialized packet log. This mechanism
tripped for TestReproducerAttach.py on Linux, because one of the packets
(jModulesInfo) uses run-length encoding. The replay server was comparing
the expanded incoming packet with the unexpanded packet in the log. As a
result, it claimed to have received an unexpected packet, which caused
the test to fail.
This patch addresses that issue by expanding the run-length encoding
before comparing the packets.
Differential revision: https://reviews.llvm.org/D76163
Fix to code from https://reviews.llvm.org/D64993.
Field StackFrame::m_behaves_like_zeroth_frame was introduced in commit
[1], however that commit hasn't added a copying of the field to
UpdatePreviousFrameFromCurrentFrame, therefore the value wouldn't change
when updating frames to reflect the current situation.
The particular scenario, where this matters is following. Assume we have
function main that invokes function func1. We set breakpoint at
func1 entry and in main after the func1 call, and do not stop at
the main entry. Therefore, when debugger stops for the first time,
func1 is frame#0, while main is frame#1, thus
m_behaves_like_zeroth_frame is set to 0 for main frame. Execution is
resumed, and stops now in main, where it is now frame#0. However while
updating the frame object, m_behaves_like_zeroth_frame remains false.
This field plays an important role when calculating line information for
backtrace: for frame#0, PC is the current line, therefore line
information is retrieved for PC, however for all other frames this is
not the case - calculated PC is a return-PC, i.e. instruction after the
function call line, therefore for those frames LLDB needs to step back
by one instruction. Initial implementation did this strictly for frames
that have index != 0 (and index is updated properly in
UpdatePreviousFrameFromCurrentFrame), but m_behaves_like_zeroth_frame
added a capability for middle-of-stack frames to behave in a similar
manner. But because current code now doesn't check frame idx,
m_behaves_like_zeroth_frame must be set to true for frames with 0 index,
not only for frame that behave like one. In the described test case,
after stopping in main, LLDB would still consider frame#0 as
non-zeroth, and would subtract instruction from the PC, and would report
previous like as current line.
The error doesn't manifest itself in LLDB interpreter though - it can be
reproduced through LLDB-MI and when using SB API, but not when we
interpreter command "continue" is executed. Honestly, I didn't fully
understand why it works in interpreter, I did found that bug "fixes"
itself if I enable DEBUG_STACK_FRAMES in StackFrameList.cpp, because
that calls StackFrame::Dump and that calls
GetSymbolContext(eSymbolContextEverything), which fills the context of
frame on the first breakpoint, therefore it doesn't have to be
recalculated (improperly) on a second frame. However, on first
breakpoint symbol context is calculated for the "call" line, not the
next one, therefore it should be recalculated anyway on a second
breakpoint, and it is done correctly, even though
m_behaves_like_zeroth_frame is still incorrect, as long as
GetSymbolContext(eSymbolContextEverything) has been called.
[1] 31e6dbe1c6 Fix PC adjustment in StackFrame::GetSymbolContext
Differential Revision: https://reviews.llvm.org/D75975
Patch by Anton Kolesov <Anton.Kolesov@synopsys.com>
This patch extends the reproducers to intercept calls to FindProcesses.
During capture it serializes the ProcessInstanceInfoList returned by the
API. During replay, it returns the serialized data instead of querying
the host.
The motivation for this patch is supporting the process attach workflow
during replay. Without this change it would incorrectly look for the
inferior on the host during replay and failing if no matching process
was found.
Differential revision: https://reviews.llvm.org/D75877
Summary: Provide a list of Unix signals for the tap completion for command "process signal".
Reviewers: teemperor
Subscribers: labath, jingham, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D75418
Starting with iOS 13 simulator binaries are identified with an
explicit platform in the new LC_BUILD_VERSION load command.
On older deployment targets using the LC_VERSION_MIN load commands,
this patch detects when an ios process runs on a macOS host and
updates the target triple with the "simulator" environment
accordingly.
(Patch re-applied with bugfix this time).
This is part of https://bugs.swift.org/browse/SR-11971
rdar://problem/58438125
Differential Revision: https://reviews.llvm.org/D75696
Starting with iOS 13 simulator binaries are identified with an
explicit platform in the new LC_BUILD_VERSION load command.
On older deployment targets using the LC_VERSION_MIN load commands,
this patch detects when an ios process runs on a macOS host and
updates the target triple with the "simulator" environment
accordingly.
(Patch re-applied without modifications, the bot failure was unrelated).
This is part of https://bugs.swift.org/browse/SR-11971
rdar://problem/58438125
Differential Revision: https://reviews.llvm.org/D75696
Starting with iOS 13 simulator binaries are identified with an
explicit platform in the new LC_BUILD_VERSION load command.
On older deployment targets using the LC_VERSION_MIN load commands,
this patch detects when an ios process runs on a macOS host and
updates the target triple with the "simulator" environment
accordingly.
This is part of https://bugs.swift.org/browse/SR-11971
rdar://problem/58438125
Differential Revision: https://reviews.llvm.org/D75696
Some tests set settings and don't clean them up, this leads to side effects in other tests.
The patch removes a global debugger instance with a per-test debugger to avoid such effects.
From what I see, lldb.DBG was needed to determine the platform before a test is run,
lldb.selected_platform is used for this purpose now. Though, this required adding a new function
to the SBPlatform interface.
Differential Revision: https://reviews.llvm.org/D74903
Summary:
This packet is necessary to make lldb work with the remote-gdb stub in
user mode qemu when running position-independent binaries. It reports
the relative position (load bias) of the loaded executable wrt. the
addresses in the file itself.
Lldb needs to know this information in order to correctly set the load
address of the executable. Normally, lldb would be able to find this out
on its own by following the breadcrumbs in the process auxiliary vector,
but we can't do this here because qemu does not support the
qXfer:auxv:read packet.
This patch does not implement full scope of the qOffsets packet (it only
supports packets with identical code, data and bss offsets), because it
is not fully clear how should the different offsets be handled and I am
not aware of a producer which would make use of this feature (qemu will
always
<https://github.com/qemu/qemu/blob/master/linux-user/elfload.c#L2436>
return the same value for code and data offsets). In fact, even gdb
ignores the offset for the bss sections, and uses the "data" offset
instead. So, until the we need more of this packet, I think it's best
to stick to the simplest solution possible. This patch simply rejects
replies with non-uniform offsets.
Reviewers: clayborg, jasonmolenda
Subscribers: lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74598
This patch moves the SB API method GetExtendedCrashInformation from
SBTarget to SBProcess since it only makes sense to call this method on a
sane process which might not be the case on a SBTarget object.
It also addresses some feedbacks received after landing the first patch
for the 'crash-info' feature.
Differential Revision: https://reviews.llvm.org/D75049
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
On Apple platforms, is __arm__ isn't defined and we're not on Intel, we use an
alternate std::string layout. I.e., the libcxx string test fails on phones
because the hand-crafted "garbage" string structs are actually valid strings.
See:
```
// _LIBCPP_ALTERNATE_STRING_LAYOUT is an old name for
// _LIBCPP_ABI_ALTERNATE_STRING_LAYOUT left here for backward compatibility.
#if (defined(__APPLE__) && !defined(__i386__) && !defined(__x86_64__) && \
(!defined(__arm__) || __ARM_ARCH_7K__ >= 2)) || \
defined(_LIBCPP_ALTERNATE_STRING_LAYOUT)
#define _LIBCPP_ABI_ALTERNATE_STRING_LAYOUT
#endif
```
Disable inspection of the garbage structs on Apple+ARM devices.
Currently, in macOS, when a process crashes, lldb halts inside the
implementation disassembly without yielding any useful information.
The only way to get more information is to detach from the process, then wait
for ReportCrash to generate a report, find the report, then see what error
message was included in it. Instead of waiting for this to happen, lldb could
locate the error_string and make it available to the user.
This patch addresses this issue by enabling the user to fetch extended
crash information for crashed processes using `process status --verbose`.
Depending on the platform, this will try to gather different crash information
into an structured data dictionnary. This dictionnary is generic and extensible,
as it contains an array for each different type of crash information.
On Darwin Platforms, lldb will iterate over each of the target's images,
extract their `__crash_info` section and generated a StructuredData::Array
containing, in each entry, the module spec, its UUID, the crash messages
and the abort cause. The array will be inserted into the platform's
`m_extended_crash_info` dictionnary and `FetchExtendedCrashInformation` will
return its JSON representation like this:
```
{
"crash-info annotations": [
{
"abort-cause": 0,
"image": "/usr/lib/system/libsystem_malloc.dylib",
"message": "main(76483,0x1000cedc0) malloc: *** error for object 0x1003040a0: pointer being freed was not allocated",
"message2": "",
"uuid": "5747D0C9-900D-3306-8D70-1E2EA4B7E821"
},
...
],
...
}
```
This crash information can also be fetched using the SB API or lldb-rpc protocol
using SBTarget::GetExtendedCrashInformation().
rdar://37736535
Differential Revision: https://reviews.llvm.org/D74657
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
Summary:
Around a third of our test sources have LLVM license headers. This patch removes those headers from all test
sources and also fixes any tests that depended on the length of the license header.
The reasons for this are:
* A few tests verify line numbers and will start failing if the number of lines in the LLVM license header changes. Once I landed my patch for valid SourceLocations in debug info we will probably have even more tests that verify line numbers.
* No other LLVM project is putting license headers in its test files to my knowledge.
* They make the test sources much more verbose than they have to be. Several tests have longer license headers than the actual test source.
For the record, the following tests had their line numbers changed to pass with the removal of the license header:
lldb-api :: functionalities/breakpoint/breakpoint_by_line_and_column/TestBreakpointByLineAndColumn.py
lldb-shell :: Reproducer/TestGDBRemoteRepro.test
lldb-shell :: Reproducer/TestMultipleTargets.test
lldb-shell :: Reproducer/TestReuseDirectory.test
lldb-shell :: ExecControl/StopHook/stop-hook-threads.test
lldb-shell :: ExecControl/StopHook/stop-hook.test
lldb-api :: lang/objc/exceptions/TestObjCExceptions.py
Reviewers: #lldb, espindola, JDevlieghere
Reviewed By: #lldb, JDevlieghere
Subscribers: emaste, aprantl, arphaman, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74839
Summary:
Currently when printing data types we include implicit scopes such as inline namespaces or anonymous namespaces.
This leads to command output like this (for `std::set<X>` with X being in an anonymous namespace):
```
(lldb) print my_set
(std::__1::set<(anonymous namespace)::X, std::__1::less<(anonymous namespace)::X>, std::__1::allocator<(anonymous namespace)::X> >) $0 = size=0 {}
```
This patch removes all the implicit scopes when printing type names in TypeSystemClang::GetDisplayTypeName
so that our output now looks like this:
```
(lldb) print my_set
(std::set<X, std::less<X>, std::allocator<X> >) $0 = size=0 {}
```
As previously GetDisplayTypeName and GetTypeName had the same output we actually often used the
two as if they are the same method (they were in fact using the same implementation), so this patch also
fixes the places where we actually want the display type name and not the actual type name.
Note that this doesn't touch the `GetTypeName` class that for example the data formatters use, so this patch
is only changes the way we display types to the user. The full type name can also still be found when passing
'-R' to see the raw output of a variable in case someone is somehow interested in that.
Partly fixes rdar://problem/59292534
Reviewers: shafik, jingham
Reviewed By: shafik
Subscribers: christof, JDevlieghere, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74478
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary:
Currently the data formatter is treating `std::atomic` variables as transparent wrappers
around their underlying value type. This causes that when printing `std::atomic<A *>`, the data
formatter will forward all requests for the children of the atomic variable to the `A *` pointer type
which will then return the respective members of `A`. If `A` in turn has a member that contains
the original atomic variable, this causes LLDB to infinitely recurse when printing an object with
such a `std::atomic` pointer member.
We could implement a workaround similar to whatever we do for pointer values but this patch
just implements the `std::atomic` formatter in the same way as we already implement other
formatters (e.g. smart pointers or `std::optional`) that just model the contents of the as a child
"Value". This way LLDB knows when it actually prints a pointer and can just use its normal
workaround if "Value" is a recursive pointer.
Fixes rdar://59189235
Reviewers: JDevlieghere, jingham, shafik
Reviewed By: shafik
Subscribers: shafik, christof, jfb, abidh, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74310
SB API clients can describe the failure message in a more natural
way for their UI, this doesn't add information for them.
Differential Revision: https://reviews.llvm.org/D74585
<rdar://problem/49953304>
This reverts b3a0c4d7dc for
TestBreakpointHitCount.py because it's now timing out on the Windows
bot. I'm not sure this is the cause, but the substitution doesn't look
correct anyway...