Please refer to
https://lists.llvm.org/pipermail/llvm-dev/2021-September/152440.html
(and that whole thread.)
TLDR: the original patch had no prior RFC, yet it had some changes that
really need a proper RFC discussion. It won't be productive to discuss
such an RFC, once it's actually posted, while said patch is already
committed, because that introduces bias towards already-committed stuff,
and the tree is potentially in broken state meanwhile.
While the end result of discussion may lead back to the current design,
it may also not lead to the current design.
Therefore i take it upon myself
to revert the tree back to last known good state.
This reverts commit 4c4093e6e3.
This reverts commit 0a2b1ba33a.
This reverts commit d9873711cb.
This reverts commit 791006fb8c.
This reverts commit c22b64ef66.
This reverts commit 72ebcd3198.
This reverts commit 5fa6039a5f.
This reverts commit 9efda541bf.
This reverts commit 94d3ff09cf.
Several FP instructions (fadd, fsub, etc.) were incorrectly assigned
a higher cost for SVE because they have custom lowering, however we
know they are legal. This patch explicitly assigns a cost of 2 to
these opcodes.
Tests added here:
Analysis/CostModel/AArch64/arith-fp-sve.ll
Differential Revision: https://reviews.llvm.org/D108993
Tell the cost model to use the scalable calculation for non-neon fixed vector.
This results in a cheaper cost for fixed-length SVE masked gathers/scatters
allowing the vectorizor to emit them more frequently.
For tight loops like this:
float r = 0;
for (int i = 0; i < n; i++) {
r += a[i];
}
it's better not to vectorise at -O3 using fixed-width ordered reductions
on AArch64 targets. Although the resulting number of instructions in the
generated code ends up being comparable to not vectorising at all, there
may be additional costs on some CPUs, for example perhaps the scheduling
is worse. It makes sense to deter vectorisation in tight loops.
Differential Revision: https://reviews.llvm.org/D108292
Removed AArch64 usage of the getMaxVScale interface, replacing it with
the vscale_range(min, max) IR Attribute.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D106277
This reverts the revert 28c04794df.
The failing MLIR test that caused the revert should be fixed in this
version.
Also includes a PPC test fix previously in 1f87c7c478.
a1ef81de35 adjusted the definition of the intrinsic, but did not
update a PowerPC test. Fix the test by updating the call & declaration
of @llvm.matrix.column.major.load.
D105263 introduced this new test. It fails when asserts are disabled,
due to using a debug option on opt.
Reviewed By: pengfei
Differential Revision: https://reviews.llvm.org/D107805
This takes the existing SVE costing for the various min/max reduction
intrinsics and expands it to NEON, where I believe it applies equally
well.
In the process it changes the lowering to use min/max cost, as opposed
to summing up the cost of ICmp+Select.
Differential Revision: https://reviews.llvm.org/D106239
As discussed on D107228, widening a subvector by inserting the whole subvector into the bottom a larger undef vector should always be cheap enough that we can treat it as zero cost.
NOTE: If this proves to cause issues we have the option of introducing a "SK_WidenSubvector" shuffle kind enum that targets could override the zero cost, but that doesn't seem necessary atm.
Differential Revision: https://reviews.llvm.org/D107228
This patch adds an initial ShuffleVectorInst::isInsertSubvectorMask helper to recognize 2-op shuffles where the lowest elements of one of the sources are being inserted into the "in-place" other operand, this includes "concat_vectors" patterns as can be seen in the Arm shuffle cost changes. This also helped fix a x86 issue with irregular/length-changing SK_InsertSubvector costs - I'm hoping this will help with D107188
This doesn't currently attempt to work with 1-op shuffles that could either be a "widening" shuffle or a self-insertion.
The self-insertion case is tricky, but we currently always match this with the existing SK_PermuteSingleSrc logic.
The widening case will be addressed in a follow up patch that treats the cost as 0.
Masks with a high number of undef elts will still struggle to match optimal subvector widths - its currently bounded by minimum-width possible insertion, whilst some cases would benefit from wider (pow2?) subvectors.
Differential Revision: https://reviews.llvm.org/D107228
This expands the cost model test for min/max to many more types,
including floating point minnum/maxnum and minimum/maximum, and FP16
with and without fullfp16. The old llc run lines are removed, as those
are better tested by CodeGen tests.
The getOrderedReductionCost implementation introduced in D105432 calls the CRTP base version getArithmeticInstrCost instead of the redirecting to the target version.
Differential Revision: https://reviews.llvm.org/D106795
I have added a new FastMathFlags parameter to getArithmeticReductionCost
to indicate what type of reduction we are performing:
1. Tree-wise. This is the typical fast-math reduction that involves
continually splitting a vector up into halves and adding each
half together until we get a scalar result. This is the default
behaviour for integers, whereas for floating point we only do this
if reassociation is allowed.
2. Ordered. This now allows us to estimate the cost of performing
a strict vector reduction by treating it as a series of scalar
operations in lane order. This is the case when FP reassociation
is not permitted. For scalable vectors this is more difficult
because at compile time we do not know how many lanes there are,
and so we use the worst case maximum vscale value.
I have also fixed getTypeBasedIntrinsicInstrCost to pass in the
FastMathFlags, which meant fixing up some X86 tests where we always
assumed the vector.reduce.fadd/mul intrinsics were 'fast'.
New tests have been added here:
Analysis/CostModel/AArch64/reduce-fadd.ll
Analysis/CostModel/AArch64/sve-intrinsics.ll
Transforms/LoopVectorize/AArch64/strict-fadd-cost.ll
Transforms/LoopVectorize/AArch64/sve-strict-fadd-cost.ll
Differential Revision: https://reviews.llvm.org/D105432
When BasicTTIImpl::getCastInstrCost can't determine the cost of a
vector cast operation when the types need legalization, it falls
back to calculating scalarization costs. Instead of crashing on
`cast<FixedVectorType>(DstVTy)` when the type is a scalable vector,
return an Invalid cost.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D106655
This adds some missing single source shuffle costs for AArch64, of i16
and i8 vectors. v4i16 are the same as v4i32 with a worse case cost of 3
coming from the perfect shuffle tables. The larger vector sizes expand
into a constant pool, plus a load (and adrp) and a tbl. I arbitrarily
chose 8 for the cost to be expensive but not too expensive.
Differential Revision: https://reviews.llvm.org/D106241
Update shl/lshr/ashr costs based on the worst case costs from the script in D103695 - many of the 128-bit shifts (usually where integer multiplies aren't used) have similar behaviour to AVX1 so we can merge them.
This changes the cost to (LT.first-1) * cost(add) + 2, where the cost of
an add is assumed to be 1. This brings it inline with the other
reductions.
Differential Revision: https://reviews.llvm.org/D106240
At the moment, <vscale x 1 x eltty> are not yet fully handled by the
code-generator, so to avoid vectorizing loops with that VF, we mark the
cost for these types as invalid.
The reason for not adding a new "TTI::getMinimumScalableVF" is because
the type is supposed to be a type that can be legalized. It partially is,
although the support for these types need some more work.
Reviewed By: paulwalker-arm, dmgreen
Differential Revision: https://reviews.llvm.org/D103882
We know that "CVTTPS2SI" returns 0x80000000 for out of range inputs (and for FP_TO_UINT, negative float values are undefined). We can use this to make unsigned conversions from vXf32 to vXi32 more efficient, particularly on targets without blend using the following logic:
small := CVTTPS2SI(x);
fp_to_ui(x) := small | (CVTTPS2SI(x - 2^31) & ARITHMETIC_RIGHT_SHIFT(small, 31))
Even on targets where "PBLENDVPS"/"PBLENDVB" exists, it is often a latency 2, low throughput instruction so this logic is applied there too (in particular for AVX2 also). It furthermore gets rid of one high latency floating point comparison in the previous lowering.
@TomHender checked the correctness of this for all possible floats between -1 and 2^32 (both ends excluded).
Original Patch by @TomHender (Tom Hender)
Differential Revision: https://reviews.llvm.org/D89697
Update (mainly) vXf32/vXf64 -> vXi8/vXi16 fptosi/fptoui costs based on the worst case costs from the script in D103695.
Move to using legalized types wherever possible, which allows us to prune the cost tables.
Update truncation costs based on the worst case costs from the script in D103695.
Move to using legalized types wherever possible, which allows us to prune the cost tables.
This patch removes the IsPairwiseForm flag from the Reduction Cost TTI
hooks, along with some accompanying code for pattern matching reductions
from trees starting at extract elements. IsPairWise is now assumed to be
false, which was the predominant way that the value was used from both
the Loop and SLP vectorizers. Since the adjustments such as D93860, the
SLP vectorizer has not relied upon this distinction between paiwise and
non-pairwise reductions.
This also removes some code that was detecting reductions trees starting
from extract elements inside the costmodel. This case was
double-counting costs though, adding the individual costs on the
individual instruction _and_ the total cost of the reduction. Removing
it changes the costs in llvm/test/Analysis/CostModel/X86/reduction.ll to
not double count. The cost of reduction intrinsics is still tested
through the various tests in
llvm/test/Analysis/CostModel/X86/reduce-xyz.ll.
Differential Revision: https://reviews.llvm.org/D105484
The Legalizer expands the operations of urem/srem into a div+mul+sub or divrem
when those are legal/custom. This patch changes the cost-model to reflect that
cost.
Since there is no 'divrem' Instruction in LLVM IR, the cost of divrem
is assumed to be the same as div+mul+sub since the three operations will
need to be executed at runtime regardless.
Patch co-authored by David Sherwood (@david-arm)
Reviewed By: RKSimon, paulwalker-arm
Differential Revision: https://reviews.llvm.org/D103799
Update costs based on the worst case costs from the script in D103695.
Move to using legalized types wherever possible, which allows us to prune the cost tables.
Update (mainly) vXi8/vXi16 -> vXf32/vXf64 sitofp/uitofp costs based on the worst case costs from the script in D103695.
Move to using legalized types wherever possible, which allows us to prune the cost tables.
Provide a generic fallback that performs the fptosi to i32 types, then truncates to sub-i32 scalars.
These numbers can be tweaked for specific sse levels, but we should get the default handling in place first.
Provide a generic fallback that extends sub-i32 scalars before using the existing sitofp instructions.
These numbers can be tweaked for specific sse levels, but we should get the default handling in place first.
We get the extension for free for non-vector loads.
This patch adds a new ShuffleKind SK_Splice and then handle the cost in
getShuffleCost, as in experimental.vector.reverse.
Differential Revision: https://reviews.llvm.org/D104630
Loads of <4 x i8> vectors were modeled as extremely expensive. And while we
don't have a load instruction that supports this, it isn't that expensive to
create a vector of i8 elements. The codegen for this was fixed/optimised in
D105110. This now tweaks the cost model and enables SLP vectorisation of my
motivating case loadi8.ll.
Differential Revision: https://reviews.llvm.org/D103629