SLM PBLENDVB is just as bad as BLENDVPD/PS - so model it as such, fixing the rr vs rm uops diff as well. The Intel AoM appears to have a copy+paste typo with PBLENDW, it doesn't match Agner or InstLatX64.
Noticed while investigating some of the weird discrepancies reported by the D103695 helper script (SLM had much better vector shift throughputs than it should).
This reapplies 71d7fed3bc which was
reverted by 3e2bd82f02. This change
includes the fix for breaking the sanitizer bots.
As seen in https://bugs.llvm.org/show_bug.cgi?id=48880 the current
implementation for parsing grouped short options can return unclear
error messages. This change fixes the example given in the ticket in
which a flag is incorrectly given an argument. Also when parsing a
group we now keep reading past the first incorrect option and output
errors for all incorrect options in the group.
Differential Revision: https://reviews.llvm.org/D108770
Adding the compiler support of MD5 CS profile based on pervious context split work D107299. A MD5 CS profile is about 40% smaller than the string-based extbinary profile. As a result, the compilation is 15% faster.
There are a few conversion from real names to md5 names that have been made on the sample loader and context tracker side to get it work.
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D108342
This change aims at supporting LBR only sample perf script which is used for regular(Non-CS) profile generation. A LBR perf script includes a batch of LBR sample which starts with a frame pointer and a group of 32 LBR entries is followed. The FROM/TO LBR pair and the range between two consecutive entries (the former entry's TO and the latter entry's FROM) will be used to infer function profile info.
An example of LBR perf script(created by `perf script -F ip,brstack -i perf.data`)
```
40062f 0x40062f/0x4005b0/P/-/-/9 0x400645/0x4005ff/P/-/-/1 0x400637/0x400645/P/-/-/1 ...
4005d7 0x4005d7/0x4005e5/P/-/-/8 0x40062f/0x4005b0/P/-/-/6 0x400645/0x4005ff/P/-/-/1 ...
...
```
For implementation:
- Extended a new child class `LBRPerfReader` for the sample parsing, reused all the functionalities in `extractLBRStack` except for an extension to parsing leading instruction pointer.
- `HybridSample` is reused(just leave the call stack empty) and the parsed samples is still aggregated in `AggregatedSamples`. After that, range samples, branch sample, address samples are computed and recorded.
- Reused `ContextSampleCounterMap` to store the raw profile, since it's no need to aggregation by context, here it just registered one sample counter with a fake context key.
- Unified to use `show-raw-profile` instead of `show-unwinder-output` to dump the intermediate raw profile, see the comments of the format of the raw profile. For CS profile, it remains to output the unwinder output.
Profile generation part will come soon.
Differential Revision: https://reviews.llvm.org/D108153
As seen in https://bugs.llvm.org/show_bug.cgi?id=48880 the current
implementation for parsing grouped short options can return unclear
error messages. This change fixes the example given in the ticket in
which a flag is incorrectly given an argument. Also when parsing a
group we now keep reading past the first incorrect option and output
errors for all incorrect options in the group.
Differential Revision: https://reviews.llvm.org/D108770
Currently context strings contain a lot of duplicated function names and that significantly increase the profile size. This change split the context into a series of {name, offset, discriminator} tuples so function names used in the context can be replaced by the index into the name table and that significantly reduce the size consumed by context.
A follow-up improvement made in the compiler and profiling tools is to avoid reconstructing full context strings which is time- and memory- consuming. Instead a context vector of `StringRef` is adopted to represent the full context in all scenarios. As a result, the previous prevalent profile map which was implemented as a `StringRef` is now engineered as an unordered map keyed by `SampleContext`. `SampleContext` is reshaped to using an `ArrayRef` to represent a full context for CS profile. For non-CS profile, it falls back to use `StringRef` to represent a contextless function name. Both the `ArrayRef` and `StringRef` objects are underpinned by real array and string objects that are stored in producer buffers. For compiler, they are maintained by the sample reader. For llvm-profgen, they are maintained in `ProfiledBinary` and `ProfileGenerator`. Full context strings can be generated only in those cases of debugging and printing.
When it comes to profile format, nothing has changed to the text format, though internally CS context is implemented as a vector. Extbinary format is only changed for CS profile, with an additional `SecCSNameTable` section which stores all full contexts logically in the form of `vector<int>`, which each element as an offset points to `SecNameTable`. All occurrences of contexts elsewhere are redirected to using the offset of `SecCSNameTable`.
Testing
This is no-diff change in terms of code quality and profile content (for text profile).
For our internal large service (aka ads), the profile generation is cut to half, with a 20x smaller string-based extbinary format generated.
The compile time of ads is dropped by 25%.
Differential Revision: https://reviews.llvm.org/D107299
Exegesis is faulty and sometimes when measuring throughput^-1
produces snippets that have loop-carried dependencies,
which must be what caused me to incorrectly measure it originally.
After looking much more carefully, the inverse throughput should match
that of the MULX w/ reg op.
As per llvm-exegesis measurements.
It turns out that SchedWrite WriteIMulH was always assigned to the low half of
the result of a MULX (rather than to the high half).
To avoid confusion, this patch swaps the two MULX writes in the tablegen
definition of MULX32/64. That way, write names better describe what they
actually refer to; this also avoids further complications if in future we decide
to reuse the same MulH writes to also model other scalar integer multiply
instructions. I also had to swap the latency values for the two MULX writes to
make sure that the change is effectively an NFC. In fact, none of the existing
x86 tests were affected by this small refactoring.
This patch also fixes a bug in MCA: a wrong latency value was propagated for
instructions that perform multiple writes to a same register. This last issue
was found by Roman while testing MULX on targets that define a different latency
for the Low/High part of the result.
Differential Revision: https://reviews.llvm.org/D108727
Summary: This patch is trying to add support for llvm-readobj
--needed-libs option under XCOFF.
For XCOFF, the needed libraries can be found from the Import
File ID Name Table of the Loader Section.
Currently, I am using binary inputs in the test since yaml2obj
does not yet support for writing the Loader Section and the
import file table.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D106643
The --set-section-flags option was being ignored when adding a new
section. Take it into account if present.
Fixes https://llvm.org/PR51244
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D106942
We have "-profile-isfs" internal option for text, binary, and
compactbinary format (mostly for debug and test purpose). We
need to set the related flag in FunctionSamples so that ProfileIsFS
is written to the header in extbinary format.
Differential Revision: https://reviews.llvm.org/D108707
This is a follow up diff for BinarySizeContextTracker to track zero size for fully optimized inlinee. When an inlinee is fully optimized away, we won't be able to get its size through symbolizing instructions, hence we will treat the corresponding context size as unknown. However by traversing the inlined probe forest, we know what're original inlinees regardless of optimization. If a context show up in inlined probes, but not during symbolization, we know that it's fully optimized away hence its size is zero instead of unknown. It should provide more accurate size cost estimation for pre-inliner to make better inline decisions in llvm-profgen.
Differential Revision: https://reviews.llvm.org/D108350
Before this patch, WriteIMulH reported a latency value which is correct for the
RR variant of MULX, but not for the RM variant.
This patch fixes the issue by introducing a new WriteIMulHLd, which is meant to
be used only by the RM variant of MULX.
Differential Revision: https://reviews.llvm.org/D108701
No demangling may be a better default in the future.
Add `--demangle` for migration convenience.
Reviewed By: Enna1
Differential Revision: https://reviews.llvm.org/D108100
This implementation allows mca to model the desired behaviour of the s_waitcnt
instruction. This patch also adds the RetireOOO flag to the AMDGPU instructions
within the scheduling model. This flag is only used by mca and allows
instructions to finish out-of-order which helps mca's simulations more closely
model the actual device.
Differential Revision: https://reviews.llvm.org/D104730
This removes the data layout, target triple, source filename, and module
identifier when possible.
Reviewed By: swamulism
Differential Revision: https://reviews.llvm.org/D108568
It appears that the Read operand for stores was being placed on the
first operand (the stored value) not the address base. This adds a
ReadST for the stored value operand, allowing the ReadAdrBase to
correctly act upon the address.
Differential Revision: https://reviews.llvm.org/D108287
verifyDieRanges function checks for the intersected address ranges.
It adds child DieRangeInfo into parent DieRangeInfo to check
whether children have overlapping address ranges. It is safe to not add
DieRangeInfo with empty address range into parent's children list.
This decreases the number of children which should be navigated and as a result
decreases execution time(parents having a lot of children with empty ranges
spend much time navigating them). For this command: "llvm-dwarfdump --verify clang-repl"
execution time decreased from 220 sec till 75 sec.
Differential Revision: https://reviews.llvm.org/D107554
Commit 9f2967bcfe introduced support for
branch coverage including export to the LCOV format.
This commit corrects the LCOV field name for branches from BFH to BRH.
The mistake seems to have slipped in as typo because the correct field
name BRH is used in the comment section at the beginning of the file.
Differential Revision: https://reviews.llvm.org/D108358
Before this patch, instructions MULX32rm and MULX64rm were missing a ReadAdvance
for the implicit read of register EDX/RDX. This patch fixes the issue, and it
also introduces a new SchedWrite for the two variants of MULX. The general idea
behind this last change is to eventually decrease the number of InstRW in the
scheduling models.
This patch also adds a ReadAdvance for the implicit read of EFLAGS in ADCX/ADOX.
Differential Revision: https://reviews.llvm.org/D108372
Support XCOFFDumper relocation reading support
This patch is part of D103696 partition
Reviewed By: daltenty, Helflym
Differential Revision: https://reviews.llvm.org/D104646
Currently, `printHelp` behaves differently for options that:
* do not define `HelpText` (such options _are not printed_), and
* define its `HelpText` as `HelpText<"">` (such options _are printed_).
In practice, both approaches lead to no help text and `printHelp` should
treat them consistently. This patch addresses that by making
`printHelpt` check the length of the help text to be printed.
All affected tests have been updated accordingly. The option definitions
for llvm-cvtres have been updated with a short description or "Not
implemented" for options that are ignored by the tool.
Differential Revision: https://reviews.llvm.org/D107557
This change enables llvm-profgen to use accurate context-sensitive post-optimization function byte size as a cost proxy to drive global preinline decisions.
To do this, BinarySizeContextTracker is introduced to track function byte size under different inline context during disassembling. In preinliner, we can not query context byte size under switch `context-cost-for-preinliner`. The tracker uses a reverse trie to keep size of functions under different context (callee as parent, caller as child), and it can give best/longest possible matching context size for given input context.
The new size cost is off by default. There're a few TODOs that needs to addressed: 1) avoid dangling string from `Offset2LocStackMap`, which will be addressed in split context work; 2) using inlinee's entry probe to make sure we have correct zero size for inlinee that's completely optimized away after inlining. Some tuning is also needed.
Differential Revision: https://reviews.llvm.org/D108180
When option `--symbolize` is true, llvm-xray convert will demangle function
name on default. This patch adds a llvm-xray convert option `no-demangle` to
determine whether to demangle function name when symbolizing function ids from
the input log.
Reviewed By: MaskRay, smeenai
Differential Revision: https://reviews.llvm.org/D108019
The current implementation of printAttributes makes it fiddly to extend
attribute support for new targets.
By refactoring the code so all target specific variables are
initialized in a switch/case statement, it becomes simpler to extend
attribute support for new targets.
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D107968
Fixes an issue with revision 5c6f748c and ad40cb88.
Adds an mcpu argument to the test command, preventing an invalid default
CPU from being used on some platforms.
Similar to D94907 (llvm-nm -D).
The output will match GNU objdump 2.37.
Older versions don't use ` (version)` for undefined symbols.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D108097
Fixes an issue with revision 5c6f748c.
Move the test added in the above commit into the X86 folder, ensuring
that it is only run on targets where its triple is valid.
Fixes issue: https://bugs.llvm.org/show_bug.cgi?id=47983
The AsmLexer currently has an issue with lexing line comments in files
with CRLF line endings, in which it reads the carriage return as being
part of the line comment. This causes an error for certain valid comment
layouts; this patch fixes this by excluding the carriage return from the
line comment.
Differential Revision: https://reviews.llvm.org/D90234
Sample profiles are stored in a string map which is basically an unordered map. Printing out profiles by simply walking the string map doesn't enforce an order. I'm sorting the map in the decreasing order of total samples to enable a more stable dump, which is good for comparing two dumps.
Reviewed By: wenlei, wlei
Differential Revision: https://reviews.llvm.org/D108147
This ensures that debug_types references aren't looked for in
debug_info section.
Behavior is still going to be questionable in an unlinked object file -
since cross-cu references could refer to symbols in another .debug_info
(or, in theory, .debug_types) chunk - but if a producer only uses
ref_addr to refer to things within the same .debug_info chunk in an
object file (eg: whole program optimization/LTO - producing two CUs into
a single .debug_info section in an object file - the ref_addrs there
could be resolved relative to that .debug_info chunk, not needing to
consider comdat (DWARFv5 type units or other creatures) chunks of
.debug_info, etc)
Improves maintainability (edit/modify the tests without recompiling) and
error messages (previously the failure would be a gtest failure
mentioning nothing of the input or desired text) and the option to
improve tests with more checks.
(maybe these tests shouldn't all be in separate files - we could
probably have DWARF yaml that contains multiple errors while still being
fairly maintainable - the various invalid offsets (ref_addr, rnglists,
ranges, etc) could probably be all in one test, but for the simple sake
of the migration I just did the mechanical thing here)