Recent changes outside sparse compiler exposed the requirement of running a
new pass (lower-affine) but this only became apparent with private testing.
By adding some vectorized runs to integration test, we will detect the need
for such changes earlier and also widen codegen coverage of course.
Reviewed By: gussmith23
Differential Revision: https://reviews.llvm.org/D108667
Multiple operations were still defined as TC ops that had equivalent versions
as YAML operations. Reducing to a single compilation path guarantees that
frontends can lower to their equivalent operations without missing the
optimized fastpath.
Some operations are maintained purely for testing purposes (mainly conv{1,2,3}D
as they are included as sole tests in the vectorizaiton transforms.
Differential Revision: https://reviews.llvm.org/D108169
These operations are not lowered to from any source dialect and are only
used for redundant tests. Removing these named ops, along with their
associated tests, will make migration to YAML operations much more
convenient.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D107993
Looks "under the hood" of the sparse stogage schemes.
Users should typically not be interested in these details
(hey, that is why we have "sparse compilers"!) but this
test makes sure the compact contents are as expected.
Reviewed By: ThomasRaoux, bixia
Differential Revision: https://reviews.llvm.org/D107683
Implements lowering dense to sparse conversion, for static tensor types only.
First step towards general sparse_tensor.convert support.
Reviewed By: ThomasRaoux
Differential Revision: https://reviews.llvm.org/D107681
With the migration from linalg.copy to memref.copy, this pass
(which was there solely to handle the linalg.copy op) is no
longer required for the end-to-end path for sparse compilation.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D106073
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: herhut, silvas
Differential Revision: https://reviews.llvm.org/D105625
Simplify vector unrolling pattern to be more aligned with rest of the
patterns and be closer to vector distribution.
The new implementation uses ExtractStridedSlice/InsertStridedSlice
instead of the Tuple ops. After this change the ops based on Tuple don't
have any more used so they can be removed.
This allows removing signifcant amount of dead code and will allow
extending the unrolling code going forward.
Differential Revision: https://reviews.llvm.org/D105381
Add the rewrite of PadTensorOp to InitTensor + InsertSlice before the
bufferization analysis starts.
This is exercised via a more advanced integration test.
Since the new behavior triggers folding, 2 tests need to be updated.
One of those seems to exhibit a folding issue with `switch` and is modified.
Differential Revision: https://reviews.llvm.org/D105549
Refactor the original code to rewrite a PadTensorOp into a
sequence of InitTensorOp, FillOp and InsertSliceOp without
vectorization by default. `GenericPadTensorOpVectorizationPattern`
provides a customized OptimizeCopyFn to vectorize the
copying step.
Reviewed By: silvas, nicolasvasilache, springerm
Differential Revision: https://reviews.llvm.org/D105293
Also add an integration test that connects all the dots end to end, including with cast to unranked tensor for external library calls.
Differential Revision: https://reviews.llvm.org/D105106
Depends On D104999
Automatic reference counting based on the liveness analysis can add a lot of reference counting overhead at runtime. If the IR is known to be constrained to few particular "shapes", it's much more efficient to provide a custom reference counting policy that will specify where it is required to update the async value reference count.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D105037
Depends On D104998
Function calls "transfer ownership" to the callee and it puts additional constraints on the reference counting optimization pass
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D104999
Depends On D104780
Recursive work splitting instead of sequential async tasks submission gives ~20%-30% speedup in microbenchmarks.
Algorithm outline:
1. Collapse scf.parallel dimensions into a single dimension
2. Compute the block size for the parallel operations from the 1d problem size
3. Launch parallel tasks
4. Each parallel task reconstructs its own bounds in the original multi-dimensional iteration space
5. Each parallel task computes the original parallel operation body using scf.for loop nest
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D104850
The patch changes the pretty printed FillOp operand order from output, value to value, output. The change is a follow up to https://reviews.llvm.org/D104121 that passes the fill value using a scalar input instead of the former capture semantics.
Differential Revision: https://reviews.llvm.org/D104356
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename SubTensorOp -> tensor.extract_slice, SubTensorInsertOp -> tensor.insert_slice.
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Note: This is a fixed version of https://reviews.llvm.org/D104499, which was reverted due to a missing update to two CMakeFile.txt.
Differential Revision: https://reviews.llvm.org/D104676
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename ops: SubTensorOp --> ExtractTensorOp, SubTensorInsertOp --> InsertTensorOp
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Differential Revision: https://reviews.llvm.org/D104499
Adds an integration test for the SPMM (sparse matrix multiplication) kernel, which multiplies a sparse matrix by a dense matrix, resulting in a dense matrix. This is just a simple modification on the existing matrix-vector multiplication kernel.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D104334
In order to allow large matmul operations using the MMA ops we need to chain
operations this is not possible unless "DOp" and "COp" type have matching
layout so remove the "DOp" layout and force accumulator and result type to
match.
Added a test for the case where the MMA value is accumulated.
Differential Revision: https://reviews.llvm.org/D103023
Removed some of the older raw "MLIRized" versions that are
no longer needed now that the sparse runtime support library
can focus on the proper sparse tensor types rather than the
opague pointer approach of the past. This avoids legacy...
Reviewed By: penpornk
Differential Revision: https://reviews.llvm.org/D102960
Lower a 1D vector transfer op to LLVM if the last dim stride is 1. Also fixes a bug in the original unit stride computation.
Differential Revision: https://reviews.llvm.org/D102897
Add a test case to test the complete execution of WMMA ops on a Nvidia
GPU with tensor cores. These tests are enabled under
MLIR_RUN_CUDA_TENSOR_CORE_TESTS.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D95334
This revision completes the "dimension ordering" feature
of sparse tensor types that enables the programmer to
define a preferred order on dimension access (other than
the default left-to-right order). This enables e.g. selection
of column-major over row-major storage for sparse matrices,
but generalized to any rank, as in:
dimOrdering = affine_map<(i,j,k,l,m,n,o,p) -> (p,o,j,k,i,l,m,n)>
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102856
VectorTransferPermutationMapLoweringPatterns can be enabled via a pass option. These additional patterns lower permutation maps to minor identity maps with broadcasting, if possible, allowing for more efficient vector load/stores. The option is deactivated by default.
Differential Revision: https://reviews.llvm.org/D102593
The experimental flag for "inplace" bufferization in the sparse
compiler can be replaced with the new inplace attribute. This gives
a uniform way of expressing the more efficient way of bufferization.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102538
Do not rely on pass labels to detect if the pattern was already applied in the past (which allows for more some extra optimizations to avoid extra InsertOps and ExtractOps). Instead, check if these optimizations can be applied on-the-fly.
This also fixes a bug, where vector.insert and vector.extract ops sometimes disappeared in the middle of the pass because they get folded away, but the next application of the pattern expected them to be there.
Differential Revision: https://reviews.llvm.org/D102206
Instead of an SCF for loop, these pattern generate fully unrolled loops with no temporary buffer allocations.
Differential Revision: https://reviews.llvm.org/D101981
Broadcast dimensions of a vector transfer op have no corresponding dimension in the mask vector. E.g., a 2-D TransferReadOp, where one dimension is a broadcast, can have a 1-D `mask` attribute.
This commit also adds a few additional transfer op integration tests for various combinations of broadcasts, masking, dim transposes, etc.
Differential Revision: https://reviews.llvm.org/D101745
Broadcast dimensions of a vector transfer op have no corresponding dimension in the mask vector. E.g., a 2-D TransferReadOp, where one dimension is a broadcast, can have a 1-D `mask` attribute.
This commit also adds a few additional transfer op integration tests for various combinations of broadcasts, masking, dim transposes, etc.
Differential Revision: https://reviews.llvm.org/D101745
A very elaborate, but also very fun revision because all
puzzle pieces are finally "falling in place".
1. replaces lingalg annotations + flags with proper sparse tensor types
2. add rigorous verification on sparse tensor type and sparse primitives
3. removes glue and clutter on opaque pointers in favor of sparse tensor types
4. migrates all tests to use sparse tensor types
NOTE: next CL will remove *all* obsoleted sparse code in Linalg
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102095
This revision migrates more code from Linalg into the new permanent home of
SparseTensor. It replaces the test passes with proper compiler passes.
NOTE: the actual removal of the last glue and clutter in Linalg will follow
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D101811
This is the very first step toward removing the glue and clutter from linalg and
replace it with proper sparse tensor types. This revision migrates the LinalgSparseOps
into SparseTensorOps of a sparse tensor dialect. This also provides a new home for
sparse tensor related transformation.
NOTE: the actual replacement with sparse tensor types (and removal of linalg glue/clutter)
will follow but I am trying to keep the amount of changes per revision manageable.
Differential Revision: https://reviews.llvm.org/D101573