This revision fixes a bug where an operation would get replaced with
a pre-existing constant that didn't dominate it. This can occur when
a pattern inserts operations to be folded at the beginning of the
constants insertion block. This revision fixes the bug by moving the
existing constant before the replaced operation in such cases. This is
fine because if a constant didn't already exist, a new one would have
been inserted before this operation anyways.
Differential Revision: https://reviews.llvm.org/D108498
While the changes are extensive, they basically fall into a few
categories:
1) Moving the TestDialect itself.
2) Updating C++ code in tablegen to explicitly use ::mlir, since it
will be put in a headers that shouldn't expect a 'using'.
3) Updating some generic MLIR Interface definitions to do the same thing.
4) Updating the Tablegen generator in a few places to be explicit about
namespaces
5) Doing the same thing for llvm references, since we no longer pick
up the definitions from mlir/Support/LLVM.h
Differential Revision: https://reviews.llvm.org/D88251
We are able to bind NativeCodeCall result as binding operation. To make
table-gen have better understanding in the form of helper function,
we need to specify the number of return values in the NativeCodeCall
template. A VoidNativeCodeCall is added for void case.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D102160
* Split memref.dim into two operations: memref.dim and tensor.dim. Both ops have the same builder interface and op argument names, so that they can be used with templates in patterns that apply to both tensors and memrefs (e.g., some patterns in Linalg).
* Add constant materializer to TensorDialect (needed for folding in affine.apply etc.).
* Remove some MemRefDialect dependencies, make some explicit.
Differential Revision: https://reviews.llvm.org/D105165
* A Reducer is a kind of RewritePattern, so it's just the same as
writing graph rewrite.
* ReductionTreePass operates on Operation rather than ModuleOp, so that
* we are able to reduce a nested structure(e.g., module in module) by
* self-nesting.
Reviewed By: jpienaar, rriddle
Differential Revision: https://reviews.llvm.org/D101046
Original interfaces are not safe to be called during dialect conversion.
This is because some ops (e.g. `dynamic_reshape(input, target_shape)`)
depend on the values of their operands to calculate the output shape.
However the operands may be out of reach during dialect conversion (e.g.
converting from tensor world to buffer world). This patch provides a new
kind of interface which accpets user-provided operands to solve this
problem.
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D102317
This is a hook that allows for providing custom initialization of the pattern, e.g. if it has bounded recursion, setting the debug name, etc., without needing to define a custom constructor. A non-virtual hook was chosen to avoid polluting the vtable with code that we really just want to be inlined when constructing the pattern. The alternative to this would be to just define a constructor for each pattern, this unfortunately creates a lot of otherwise unnecessary boiler plate for a lot of patterns and a hook provides a much simpler/cleaner interface for the very common case.
Differential Revision: https://reviews.llvm.org/D102440
We are able to bind the result from native function while rewriting
pattern. In matching pattern, if we want to get some values back, we can
do that by passing parameter as return value placeholder. Besides, add
the semantic of '$_self' in NativeCodeCall while matching, it'll be the
operation that defines certain operand.
Differential Revision: https://reviews.llvm.org/D100746
This allows for the conversion to match `A(B()) -> C()` with a pattern matching
`A` and marking `B` for deletion.
Also add better assertions when an operation is erased while still having uses.
Differential Revision: https://reviews.llvm.org/D99442
A new `InterfaceMethod` is added to `InferShapedTypeOpInterface` that
allows an operation to return the `Value`s for each dim of its
results. It is intended for the case where the `Value` returned for
each dim is computed using the operands and operation attributes. This
interface method is for cases where the result dim of an operation can
be computed independently, and it avoids the need to aggregate all
dims of a result into a single shape value. This also implies that
this is not suitable for cases where the result type is unranked (for
which the existing interface methods is to be used).
Also added is a canonicalization pattern that uses this interface and
resolves the shapes of the output in terms of the shapes of the
inputs. Moving Linalg ops to use this interface, so that many
canonicalization patterns implemented for individual linalg ops to
achieve the same result can be removed in favor of the added
canonicalization pattern.
Differential Revision: https://reviews.llvm.org/D97887
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
To match an interface or trait, users currently have to use the `MatchAny` tag. This tag can be quite problematic for compile time for things like the canonicalizer, as the `MatchAny` patterns may get applied to *every* operation. This revision adds better support by bucketing interface/trait patterns based on which registered operations have them registered. This means that moving forward we will only attempt to match these patterns to operations that have this interface registered. Two simplify defining patterns that match traits and interfaces, two new utility classes have been added: OpTraitRewritePattern and OpInterfaceRewritePattern.
Differential Revision: https://reviews.llvm.org/D98986
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
These properties were useful for a few things before traits had a better integration story, but don't really carry their weight well these days. Most of these properties are already checked via traits in most of the code. It is better to align the system around traits, and improve the performance/cost of traits in general.
Differential Revision: https://reviews.llvm.org/D96088
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
In dialect conversion infrastructure, source materialization applies as part of
the finalization procedure to results of the newly produced operations that
replace previously existing values with values having a different type.
However, such operations may be created to replace operations created in other
patterns. At this point, it is possible that the results of the _original_
operation are still in use and have mismatching types, but the results of the
_intermediate_ operation that performed the type change are not in use leading
to the absence of source materialization. For example,
%0 = dialect.produce : !dialect.A
dialect.use %0 : !dialect.A
can be replaced with
%0 = dialect.other : !dialect.A
%1 = dialect.produce : !dialect.A // replaced, scheduled for removal
dialect.use %1 : !dialect.A
and then with
%0 = dialect.final : !dialect.B
%1 = dialect.other : !dialect.A // replaced, scheduled for removal
%2 = dialect.produce : !dialect.A // replaced, scheduled for removal
dialect.use %2 : !dialect.A
in the same rewriting, but only the %1->%0 replacement is currently considered.
Change the logic in dialect conversion to look up all values that were replaced
by the given value and performing source materialization if any of those values
is still in use with mismatching types. This is performed by computing the
inverse value replacement mapping. This arguably expensive manipulation is
performed only if there were some type-changing replacements. An alternative
could be to consider all replaced operations and not only those that resulted
in type changes, but it would harm pattern-level composability: the pattern
that performed the non-type-changing replacement would have to be made aware of
the type converter in order to call the materialization hook.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D95626
In dialect conversion, signature conversions essentially perform block argument
replacement and are added to the general value remapping. However, the replaced
values were not tracked, so if a signature conversion was rolled back, the
construction of operand lists for the following patterns could have obtained
block arguments from the mapping and give them to the pattern leading to
use-after-free. Keep track of signature conversions similarly to normal block
argument replacement, and erase such replacements from the general mapping when
the conversion is rolled back.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D95688
This revision adds a new `replaceOpWithIf` hook that replaces uses of an operation that satisfy a given functor. If all uses are replaced, the operation gets erased in a similar manner to `replaceOp`. DialectConversion support will be added in a followup as this requires adjusting how replacements are tracked there.
Differential Revision: https://reviews.llvm.org/D94632
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D93432
TestDialect has many operations and they all live in ::mlir namespace.
Sometimes it is not clear whether the ops used in the code for the test passes
belong to Standard or to Test dialects.
Also, with this change it is easier to understand what test passes registered
in mlir-opt are actually passes in mlir/test.
Differential Revision: https://reviews.llvm.org/D90794
This class represents a rewrite pattern list that has been frozen, and thus immutable. This replaces the uses of OwningRewritePatternList in pattern driver related API, such as dialect conversion. When PDL becomes more prevalent, this API will allow for optimizing a set of patterns once without the need to do this per run of a pass.
Differential Revision: https://reviews.llvm.org/D89104
There are several pieces of pattern rewriting infra in IR/ that really shouldn't be there. This revision moves those pieces to a better location such that they are easier to evolve in the future(e.g. with PDL). More concretely this revision does the following:
* Create a Transforms/GreedyPatternRewriteDriver.h and move the apply*andFold methods there.
The definitions for these methods are already in Transforms/ so it doesn't make sense for the declarations to be in IR.
* Create a new lib/Rewrite library and move PatternApplicator there.
This new library will be focused on applying rewrites, and will also include compiling rewrites with PDL.
Differential Revision: https://reviews.llvm.org/D89103
The Pattern class was originally intended to be used for solely matching operations, but that use never materialized. All of the pattern infrastructure uses RewritePattern, and the infrastructure for pure matching(Matchers.h) is implemented inline. This means that this class isn't a useful abstraction at the moment, so this revision refactors it to solely encapsulate the "metadata" of a pattern. The metadata includes the various state describing a pattern; benefit, root operation, etc. The API on PatternApplicator is updated to now operate on `Pattern`s as nothing special from `RewritePattern` is necessary.
This refactoring is also necessary for the upcoming use of PDL patterns alongside C++ rewrite patterns.
Differential Revision: https://reviews.llvm.org/D86258
Added an underlying matcher for generic constant ops. This
included a rewriter of RewriterGen to make variable use more
clear.
Differential Revision: https://reviews.llvm.org/D89161
This revision introduces support for buffer allocation for any named linalg op.
To avoid template instantiating many ops, a new ConversionPattern is created to capture the LinalgOp interface.
Some APIs are updated to remain consistent with MLIR style:
`OwningRewritePatternList * -> OwningRewritePatternList &`
`BufferAssignmentTypeConverter * -> BufferAssignmentTypeConverter &`
Differential revision: https://reviews.llvm.org/D89226
Unsigned and Signless attributes use uintN_t and signed attributes use intN_t, where N is the fixed width. The 1-bit variants use bool.
Differential Revision: https://reviews.llvm.org/D86739
- This utility to merge a block anywhere into another one can help inline single
block regions into other blocks.
- Modified patterns test to use the new function.
Differential Revision: https://reviews.llvm.org/D86251
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
mlir::registerDialect<mlir::standalone::StandaloneDialect>();
mlir::registerDialect<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally registered dialects on construction. Instead Dialects are only loaded explicitly on demand:
- the Parser is lazily loading Dialects in the context as it encounters them during parsing. This is the only purpose for registering dialects and not load them in the context.
- Passes are expected to declare the dialects they will create entity from (Operations, Attributes, or Types), and the PassManager is loading Dialects into the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only need to load the dialect for the IR it will emit, and the optimizer is self-contained and load the required Dialects. For example in the Toy tutorial, the compiler only needs to load the Toy dialect in the Context, all the others (linalg, affine, std, LLVM, ...) are automatically loaded depending on the optimization pipeline enabled.
This revision adds support for much deeper type conversion integration into the conversion process, and enables auto-generating cast operations when necessary. Type conversions are now largely automatically managed by the conversion infra when using a ConversionPattern with a provided TypeConverter. This removes the need for patterns to do type cast wrapping themselves and moves the burden to the infra. This makes it much easier to perform partial lowerings when type conversions are involved, as any lingering type conversions will be automatically resolved/legalized by the conversion infra.
To support this new integration, a few changes have been made to the type materialization API on TypeConverter. Materialization has been split into three separate categories:
* Argument Materialization: This type of materialization is used when converting the type of block arguments when calling `convertRegionTypes`. This is useful for contextually inserting additional conversion operations when converting a block argument type, such as when converting the types of a function signature.
* Source Materialization: This type of materialization is used to convert a legal type of the converter into a non-legal type, generally a source type. This may be called when uses of a non-legal type persist after the conversion process has finished.
* Target Materialization: This type of materialization is used to convert a non-legal, or source, type into a legal, or target, type. This type of materialization is used when applying a pattern on an operation, but the types of the operands have not yet been converted.
Differential Revision: https://reviews.llvm.org/D82831
- Arguments of the first block of a region are considered region arguments.
- Add API on Region class to deal with these arguments directly instead of
using the front() block.
- Changed several instances of existing code that can use this API
- Fixes https://bugs.llvm.org/show_bug.cgi?id=46535
Differential Revision: https://reviews.llvm.org/D83599