Two-address pass works right before RA and if an immediate
was folded into an instruction there is nothing to remove
the dead def. We end up with something like:
v_mov_b32_e32 v14, 0xc1700000
v_mov_b32_e32 v14, 0x41200000
v_fmaak_f32 v51, s67, v19, 0xc1700000
v_fmaak_f32 v38, v51, v19, 0x4120000
The patch kills the dead move instruction right in the folding.
Differential Revision: https://reviews.llvm.org/D114999
Greedy register allocator prefers to move a constrained
live range into a larger allocatable class over spilling
them. This patch defines the necessary superclasses for
vector registers. For subtargets that support copy between
VGPRs and AGPRs, the vector register spills during regalloc
now become just copies.
Reviewed By: rampitec, arsenm
Differential Revision: https://reviews.llvm.org/D109301
The combined vector register classes with both
VGPRs and AGPRs are currently unallocatable.
This patch turns them into allocatable as a
prerequisite to enable copy between VGPR and
AGPR registers during regalloc.
Also, added the missing AV register classes from
192b to 1024b.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D109300
NFCI. Previously the implicit use was added to V_MOV_B32_indirect_read
when building the instruction. V_MOV_B32_indirect_write didn't have an
implicit use of M0 at all, but apparently it did not cause any problems.
Differential Revision: https://reviews.llvm.org/D114239
Introduce V_MOV_B32_indirect_read for indexed vgpr reads
(and rename the old V_MOV_B32_indirect to
V_MOV_B32_indirect_write) so they can be unambiguously
distinguished from regular V_MOV_B32_e32. Previously they
were distinguished by looking for extra implicit operands
but this is fragile because regular moves sometimes have
extra implicit operands too:
- either by accident, when instructions end up with
duplicate implicit operands (see e.g. D100939)
- or by design, when SIInstrInfo::copyPhysReg breaks a
multi-dword copy into individual subreg mov instructions
and adds implicit operands for the super-register.
The effect of this is that SIInstrInfo::isFoldableCopy can
be simplified and identifies more foldable copies. The test
diffs show that more immediate 0 values have been folded as
inline operands.
SIInstrInfo::isReallyTriviallyReMaterializable could
probably be simplified too but that is not part of this
patch.
Differential Revision: https://reviews.llvm.org/D114230
Delegate updating of LiveIntervals to each target's
convertToThreeAddress implementation, instead of repairing LiveIntervals
after the fact in TwoAddressInstruction::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D113493
NFC. This check mainly handles size affecting literals. Make it check all
explicit operands instead of a few by name. Also make the isLiteral
check handle the KIMM operands, see https://reviews.llvm.org/D111067
Change-Id: I1a362d55b2a10f5c74d445272e8b7829a8b77597
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D113318
Change-Id: Ie6c688f30a71e0335d1c6dd1ff65019bd7ce684e
- When an unconditional branch is expanded into an indirect branch, if
there is no scavenged register, an SGPR pair needs spilling to enable
the destination PC calculation. In addition, before jumping into the
destination, that clobbered SGPR pair need restoring.
- As SGPR cannot be spilled to or restored from memory directly, the
spilling/restoring of that SGPR pair reuses the regular SGPR spilling
support but without spilling it into memory. As that spilling and
restoring points are fully controlled, we only need to spill that SGPR
into the temporary VGPR, which needs spilling into its emergency slot.
- The target-specific hook is revised to take additional restore block,
where the restoring code is filled. After that, the relaxation will
place that restore block directly before the destination block and
insert an unconditional branch in any fall-through block into the
destination block.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D106449
D106408 was doing this for all targets although it was
reverted due to couple performance regressions on some targets.
The difference for AMDGPU is the ability to rematerialize SOP
instructions with virtual register uses like we already do for VOP.
Differential Revision: https://reviews.llvm.org/D110743
These instructions should allow src0 to be a literal with the same
value as the mandatory other literal. Enable it by introducing an
operand that defers adding its value to the MI when decoding till
the mandatory literal is parsed.
Reviewed By: dp, foad
Differential Revision: https://reviews.llvm.org/D111067
Change-Id: I22b0ae0d35bad17b6f976808e48bffe9a6af70b7
Without this change _term instructions can be removed during
critical edge splitting.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D111126
This simplifies the API and addresses a FIXME in
TwoAddressInstructionPass::convertInstTo3Addr.
Differential Revision: https://reviews.llvm.org/D110229
Use GCNHazardRecognizer in postra sched.
Updated tests for the new schedules.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D109536
Change-Id: Ia86ba2ae168f12fb34b4d8efdab491f84d936cde
Description: This change enables the compare operations to be selected to SALU/VALU form
dependent of the SDNode divergence flag.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D106079
It looked more reasonable to set the wait state to
zero for all non-instructions. With that we can avoid
the special handling for them in `getWaitStatesSince`
and `AdvanceCycle`. This NFC patch makes the handling
more generic.
Instructions like WAVE_BARRIER and SI_MASKED_UNREACHABLE
are only placeholders to prevent certain unwanted
transformations and will get discarded during assembly
emission. They should not be counted during nop insertion.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D108022
Allow MIMG instructions to be selected with 6/7 VGPRs for vaddr.
Previously these were rounded up to VReg_256 this saves VGPRs.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D103800
Any def of EXEC prevents rematerialization of any VOP instruction
because of the physreg use. Create a callback to check if the
physreg use can be ingored to allow rematerialization.
Differential Revision: https://reviews.llvm.org/D105836
This is a pilot change to verify the logic. The rest will be
done in a same way, at least the rest of VOP1.
Differential Revision: https://reviews.llvm.org/D105742
This is to allow 64 bit constant rematerialization. If a constant
is split into two separate moves initializing sub0 and sub1 like
now RA cannot rematerizalize a 64 bit register.
This gives 10-20% uplift in a set of huge apps heavily using double
precession math.
Fixes: SWDEV-292645
Differential Revision: https://reviews.llvm.org/D104874
Add SReg_224, VReg_224, AReg_224, etc.
Link 224-bit types with v7i32/v7f32.
Link existing 192-bit types to newly added v3i64/v3f64/v6i32/v6f32.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D104622
Avoid having to round up to v8f32/VReg_256 when only 5 VGPRs are
required for a MIMG address operand.
Maintain _V8 instruction variants of pseudo instructions allowing
assembly prior to GFX10 to work as-is. Currently the validator
can tell for GFX10 what the correct size is, so will disallow
oversize address registers.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D103672
The FixSGPRCopies pass converts instructions to VALU when
removing illegal VGPR to SGPR copies. Instructions that use SCC
are changed to use VCC instead. When that happens, the pass must
also change instructions that define SCC to define VCC.
The pass was not changing the SCC definition when an ADDC is
converted due to a input that is a VGPR to SGPR copy. But, the
initial ADD insruction, which define SCC, is not converted.
This causes a compilation failure due to a use of an undefined
physical register.
This patch adds code that inserts the SCC definition in the
MoveToVALU worklist when a SCC use is converted to a VCC use.
Differential Revision: https://reviews.llvm.org/D102111
moveOperands does not handle moving tied operands since it would
generally have to fixup the tied operand references. Avoid the assert
by untying and retying after the modification. These in place
modifications really aren't managable.
A consequence is that checkInstOffsetsDoNotOverlap can now distinguish
sp+offset from fp+offset, so it knows that it shouldn't try to work out
whether the accesses overlap just by comparing the offsets. For example
in these two instructions:
MIR:
BUFFER_STORE_DWORD_OFFSET %0:vgpr_32(s32), $sgpr0_sgpr1_sgpr2_sgpr3, $sgpr32, 4, 0, 0, 0, 0, 0, implicit $exec :: (dereferenceable store 4 into stack + 4, addrspace 5)
%4:vgpr_32 = BUFFER_LOAD_DWORD_OFFEN %stack.0.alloca, $sgpr0_sgpr1_sgpr2_sgpr3, $sgpr32, 0, 0, 0, 0, 0, 0, implicit $exec :: (load 4 from `i8 addrspace(5)* undef`, addrspace 5)
ISA:
buffer_store_dword v0, off, s[0:3], s32 offset:4
buffer_load_dword v0, off, s[0:3], s34
Differential Revision: https://reviews.llvm.org/D73957
A16 support for image instructions assembly/disassembly (gfx10) was missing
Also refactor MIMG op addr size calcs to common function
We'd got 3 places where the same operation was being done.
One test is now marked XFAIL until a related codegen patch is in place
Differential Revision: https://reviews.llvm.org/D102231
Change-Id: I7e86e730ef8c71901457855cba570581f4f576bb
gfx9 does not work with negative offsets, gfx10 works only with
aligned negative offsets, but not with unaligned negative offsets.
This is slightly more conservative than needed, gfx9 does support
negative offsets when a VGPR address is used and gfx10 supports
negative, unaligned offsets when an SGPR address is used, but we
do not make use of that with this patch.
Differential Revision: https://reviews.llvm.org/D101292
Extend the legalization of global SADDR loads and stores
with changing to VADDR to the FLAT scratch instructions.
Differential Revision: https://reviews.llvm.org/D101408
Instead of legalizing saddr operand with a readfirstlane
when address is moved from SGPR to VGPR we can just
change the opcode.
Differential Revision: https://reviews.llvm.org/D101405
In GFX10 VOP3 can have a literal, which opens up the possibility of two
operands using the same literal value, which is allowed and only counts
as one use of the constant bus.
AMDGPUAsmParser::validateConstantBusLimitations already knew about this
but SIInstrInfo::verifyInstruction did not.
Differential Revision: https://reviews.llvm.org/D100770