Commit Graph

2230 Commits

Author SHA1 Message Date
Cullen Rhodes
1fd3a04775 [LV] Disable epilogue vectorization for scalable VFs
Epilogue vectorization doesn't support scalable vectorization factors
yet, disable it for now.

Reviewed By: sdesmalen, bmahjour

Differential Revision: https://reviews.llvm.org/D93063
2020-12-17 12:14:03 +00:00
Sanjay Patel
38ebc1a13d [VectorCombine] optimize alignment for load transform
Here's another minimal step suggested by D93229 / D93397 .
(I'm trying to be extra careful in these changes because
load transforms are easy to get wrong.)

We can optimistically choose the greater alignment of a
load and its pointer operand. As the test diffs show, this
can improve what would have been unaligned vector loads
into aligned loads.

When we enhance with gep offsets, we will need to adjust
the alignment calculation to include that offset.

Differential Revision: https://reviews.llvm.org/D93406
2020-12-16 15:25:45 -05:00
Sanjay Patel
aaaf0ec72b [VectorCombine] loosen alignment constraint for load transform
As discussed in D93229, we only need a minimal alignment constraint
when querying whether a hypothetical vector load is safe. We still
pass/use the potentially stronger alignment attribute when checking
costs and creating the new load.

There's already a test that changes with the minimum code change,
so splitting this off as a preliminary commit independent of any
gep/offset enhancements.

Differential Revision: https://reviews.llvm.org/D93397
2020-12-16 12:25:18 -05:00
Caroline Concatto
be9184bc55 [SLPVectorizer]Migrate getEntryCost to return InstructionCost
This patch also changes:
  the return type of getGatherCost and
  the signature of the debug function dumpTreeCosts
to use InstructionCost.

This patch is part of a series of patches to use InstructionCost instead of
unsigned/int for the cost model functions.

See this thread for context:
http://lists.llvm.org/pipermail/llvm-dev/2020-November/146408.html

See this patch for the introduction of the type:
https://reviews.llvm.org/D91174

Depends on D93049

Differential Revision: https://reviews.llvm.org/D93127
2020-12-16 14:18:40 +00:00
Caroline Concatto
07217e0a1b [CostModel]Migrate getTreeCost() to use InstructionCost
This patch changes the type of cost variables (for instance: Cost, ExtractCost,
SpillCost) to use InstructionCost.
This patch also changes the type of cost variables to InstructionCost in other
functions that use the result of getTreeCost()
This patch is part of a series of patches to use InstructionCost instead of
unsigned/int for the cost model functions.

See this thread for context:
http://lists.llvm.org/pipermail/llvm-dev/2020-November/146408.html

Depends on D91174

Differential Revision: https://reviews.llvm.org/D93049
2020-12-16 13:08:37 +00:00
Philip Reames
1f6e15566f [LV] Weaken a unnecessarily strong assert [NFC]
Account for the fact that (in the future) the latch might be a switch not a branch.  The existing code is correct, minus the assert.
2020-12-15 19:07:53 -08:00
Philip Reames
af7ef895d4 [LV] Extend dead instruction detection to multiple exiting blocks
Given we haven't yet enabled multiple exiting blocks, this is currently non functional, but it's an obvious extension which cleans up a later patch.

I don't think this is worth review (as it's pretty obvious), if anyone disagrees, feel feel to revert or comment and I will.
2020-12-15 18:46:32 -08:00
Philip Reames
a81db8b315 [LV] Restructure handling of -prefer-predicate-over-epilogue option [NFC]
This should be purely non-functional.  When touching this code for another reason, I found the handling of the PredicateOrDontVectorize piece here very confusing.  Let's make it an explicit state (instead of an implicit combination of two variables), and use early return for options/hint processing.
2020-12-15 12:38:13 -08:00
Florian Hahn
7186a3965a [VPlan] Use VPDef for VPWidenSelectRecipe.
This patch turns updates VPWidenSelectRecipe to manage the value
it defines using VPDef.

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D90560
2020-12-15 14:15:01 +00:00
Florian Hahn
318f5798d8 [VPlan] Use VPDef for VPWidenGEPRecipe.
This patch turns updates VPWidenGEPRecipe to manage the value it defines
using VPDef. The VPValue is used  during VPlan construction and
codegeneration instead of the plain IR reference where possible.

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D90561
2020-12-15 09:30:14 +00:00
Florian Hahn
ad1161f9b5 [VPlan] Use VPdef for VPWidenCall.
This patch turns updates VPWidenREcipe to manage the value it defines
using VPDef.

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D90559
2020-12-15 09:20:07 +00:00
Sanjay Patel
d399f870b5 [VectorCombine] make load transform poison-safe
As noted in D93229, the transform from scalar load to vector load
potentially leaks poison from the extra vector elements that are
being loaded.

We could use freeze here (and x86 codegen at least appears to be
the same either way), but we already have a shuffle in this logic
to optionally change the vector size, so let's allow that
instruction to serve both purposes.

Differential Revision: https://reviews.llvm.org/D93238
2020-12-14 17:42:01 -05:00
Stanislav Mekhanoshin
87d7757bbe [SLP] Control maximum vectorization factor from TTI
D82227 has added a proper check to limit PHI vectorization to the
maximum vector register size. That unfortunately resulted in at
least a couple of regressions on SystemZ and x86.

This change reverts PHI handling from D82227 and replaces it with
a more general check in SLPVectorizerPass::tryToVectorizeList().
Moved to tryToVectorizeList() it allows to restart vectorization
if initial chunk fails.

However, this function is more general and handles not only PHI
but everything which SLP handles. If vectorization factor would
be limited to maximum vector register size it would limit much
more vectorization than before leading to further regressions.
Therefore a new TTI callback getMaximumVF() is added with the
default 0 to preserve current behavior and limit nothing. Then
targets can decide what is better for them.

The callback gets ElementSize just like a similar getMinimumVF()
function and the main opcode of the chain. The latter is to avoid
regressions at least on the AMDGPU. We can have loads and stores
up to 128 bit wide, and <2 x 16> bit vector math on some
subtargets, where the rest shall not be vectorized. I.e. we need
to differentiate based on the element size and operation itself.

Differential Revision: https://reviews.llvm.org/D92059
2020-12-14 08:49:40 -08:00
Florian Hahn
e42e5263bd [VPlan] Make VPWidenMemoryInstructionRecipe a VPDef.
This patch updates VPWidenMemoryInstructionRecipe to use VPDef
to manage the value it produces instead of inheriting from VPValue.

Reviewed By: gilr

Differential Revision: https://reviews.llvm.org/D90563
2020-12-14 14:13:59 +00:00
Anton Afanasyev
fac7c7ec3c [SLP] Fix vector element size for the store chains
Vector element size could be different for different store chains.
This patch prevents wrong computation of maximum number of elements
for that case.

Differential Revision: https://reviews.llvm.org/D93192
2020-12-14 15:51:43 +03:00
Kazu Hirata
5891ad4e22 [Transforms] Use llvm::erase_value (NFC) 2020-12-13 09:48:47 -08:00
Florian Hahn
533f85767c [VPlan] Use interleaveComma in printOperands() (NFC). 2020-12-13 16:29:16 +00:00
Kazu Hirata
215c1b1935 [Transforms] Use is_contained (NFC) 2020-12-12 09:37:49 -08:00
David Green
ab97c9bdb7 [LV] Fix scalar cost for tail predicated loops
When it comes to the scalar cost of any predicated block, the loop
vectorizer by default regards this predication as a sign that it is
looking at an if-conversion and divides the scalar cost of the block by
2, assuming it would only be executed half the time. This however makes
no sense if the predication has been introduced to tail predicate the
loop.

Original patch by Anna Welker

Differential Revision: https://reviews.llvm.org/D86452
2020-12-12 14:21:40 +00:00
David Sherwood
9b76160e53 [Support] Introduce a new InstructionCost class
This is the first in a series of patches that attempts to migrate
existing cost instructions to return a new InstructionCost class
in place of a simple integer. This new class is intended to be
as light-weight and simple as possible, with a full range of
arithmetic and comparison operators that largely mirror the same
sets of operations on basic types, such as integers. The main
advantage to using an InstructionCost is that it can encode a
particular cost state in addition to a value. The initial
implementation only has two states - Normal and Invalid - but these
could be expanded over time if necessary. An invalid state can
be used to represent an unknown cost or an instruction that is
prohibitively expensive.

This patch adds the new class and changes the getInstructionCost
interface to return the new class. Other cost functions, such as
getUserCost, etc., will be migrated in future patches as I believe
this to be less disruptive. One benefit of this new class is that
it provides a way to unify many of the magic costs in the codebase
where the cost is set to a deliberately high number to prevent
optimisations taking place, e.g. vectorization. It also provides
a route to represent the extremely high, and unknown, cost of
scalarization of scalable vectors, which is not currently supported.

Differential Revision: https://reviews.llvm.org/D91174
2020-12-11 08:12:54 +00:00
Sanjay Patel
12b684ae02 [VectorCombine] improve readability; NFC
If we are going to allow adjusting the pointer for GEPs,
rearranging the code a bit will make it easier to follow.
2020-12-10 13:10:26 -05:00
Sanjay Patel
b2ef264096 [VectorCombine] allow peeking through an extractelt when creating a vector load
This is an enhancement to load vectorization that is motivated by
a pattern in https://llvm.org/PR16739.
Unfortunately, it's still not enough to make a difference there.
We will have to handle multi-use cases in some better way to avoid
creating multiple overlapping loads.

Differential Revision: https://reviews.llvm.org/D92858
2020-12-09 10:36:14 -05:00
Anton Afanasyev
e5bf2e8989 [SLP] Use the width of value truncated just before storing
For stores chain vectorization we choose the size of vector
elements to ensure we fit to minimum and maximum vector register
size for the number of elements given. This patch corrects vector
element size choosing the width of value truncated just before
storing instead of the width of value stored.

Fixes PR46983

Differential Revision: https://reviews.llvm.org/D92824
2020-12-09 16:38:45 +03:00
Sander de Smalen
d568cff696 [LoopVectorizer][SVE] Vectorize a simple loop with with a scalable VF.
* Steps are scaled by `vscale`, a runtime value.
* Changes to circumvent the cost-model for now (temporary)
  so that the cost-model can be implemented separately.

This can vectorize the following loop [1]:

   void loop(int N, double *a, double *b) {
     #pragma clang loop vectorize_width(4, scalable)
     for (int i = 0; i < N; i++) {
       a[i] = b[i] + 1.0;
     }
   }

[1] This source-level example is based on the pragma proposed
separately in D89031. This patch only implements the LLVM part.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D91077
2020-12-09 11:25:21 +00:00
Sander de Smalen
adc37145de [LoopVectorizer] NFC: Remove unnecessary asserts that VF cannot be scalable.
This patch removes a number of asserts that VF is not scalable, even though
the code where this assert lives does nothing that prevents VF being scalable.

Reviewed By: dmgreen

Differential Revision: https://reviews.llvm.org/D91060
2020-12-09 11:25:21 +00:00
Sanjay Patel
5fe1a49f96 [SLP] fix typo in debug string; NFC 2020-12-07 15:09:21 -05:00
Bardia Mahjour
4db9b78c81 [LV] Epilogue Vectorization with Optimal Control Flow - Default Enablement
This patch enables epilogue vectorization by default per reviewer requests.

Differential Revision: https://reviews.llvm.org/D89566
2020-12-07 14:29:36 -05:00
Alexey Bataev
438682de6a [SLP]Merge reorder and reuse shuffles.
It is possible to merge reuse and reorder shuffles and reduce the total
cost of the ivectorization tree/number of final instructions.

Differential Revision: https://reviews.llvm.org/D92668
2020-12-07 07:50:00 -08:00
Philip Reames
0c866a3d6a [LoopVec] Support non-instructions as argument to uniform mem ops
The initial step of the uniform-after-vectorization (lane-0 demanded only) analysis was very awkwardly written. It would revisit use list of each pointer operand of a widened load/store. As a result, it was in the worst case O(N^2) where N was the number of instructions in a loop, and had restricted operand Value types to reduce the size of use lists.

This patch replaces the original algorithm with one which is at most O(2N) in the number of instructions in the loop. (The key observation is that each use of a potentially interesting pointer is visited at most twice, once on first scan, once in the use list of *it's* operand. Only instructions within the loop have their uses scanned.)

In the process, we remove a restriction which required the operand of the uniform mem op to itself be an instruction.  This allows detection of uniform mem ops involving global addresses.

Differential Revision: https://reviews.llvm.org/D92056
2020-12-03 14:51:44 -08:00
Bardia Mahjour
a7e2c26939 [LV] Epilogue Vectorization with Optimal Control Flow (Recommit)
This is yet another attempt at providing support for epilogue
vectorization following discussions raised in RFC http://llvm.1065342.n5.nabble.com/llvm-dev-Proposal-RFC-Epilog-loop-vectorization-tt106322.html#none
and reviews D30247 and D88819.

Similar to D88819, this patch achieve epilogue vectorization by
executing a single vplan twice: once on the main loop and a second
time on the epilogue loop (using a different VF). However it's able
to handle more loops, and generates more optimal control flow for
cases where the trip count is too small to execute any code in vector
form.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D89566
2020-12-02 10:09:56 -05:00
Sanjay Patel
56fd29e93b [SLP] use 'match' for binop/select; NFC
This might be a small improvement in readability, but the
real motivation is to make it easier to adapt the code to
deal with intrinsics like 'maxnum' and/or integer min/max.

There is potentially help in doing that with D92086, but
we might also just add specialized wrappers here to deal
with the expected patterns.
2020-12-02 09:04:08 -05:00
David Sherwood
71bd59f0cb [SVE] Add support for scalable vectors with vectorize.scalable.enable loop attribute
In this patch I have added support for a new loop hint called
vectorize.scalable.enable that says whether we should enable scalable
vectorization or not. If a user wants to instruct the compiler to
vectorize a loop with scalable vectors they can now do this as
follows:

  br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !2
  ...
  !2 = !{!2, !3, !4}
  !3 = !{!"llvm.loop.vectorize.width", i32 8}
  !4 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}

Setting the hint to false simply reverts the behaviour back to the
default, using fixed width vectors.

Differential Revision: https://reviews.llvm.org/D88962
2020-12-02 13:23:43 +00:00
Fangrui Song
a5309438fe static const char *const foo => const char foo[]
By default, a non-template variable of non-volatile const-qualified type
having namespace-scope has internal linkage, so no need for `static`.
2020-12-01 10:33:18 -08:00
Bardia Mahjour
c94af03f7f Revert "[LV] Epilogue Vectorization with Optimal Control Flow"
This reverts commit 9c5504adce.
Reverting to investigate build failure in http://lab.llvm.org:8011/#/builders/98/builds/1461/steps/9
2020-12-01 12:50:36 -05:00
Bardia Mahjour
9c5504adce [LV] Epilogue Vectorization with Optimal Control Flow
This is yet another attempt at providing support for epilogue
vectorization following discussions raised in RFC http://llvm.1065342.n5.nabble.com/llvm-dev-Proposal-RFC-Epilog-loop-vectorization-tt106322.html#none
and reviews D30247 and D88819.

Similar to D88819, this patch achieve epilogue vectorization by
executing a single vplan twice: once on the main loop and a second
time on the epilogue loop (using a different VF). However it's able
to handle more loops, and generates more optimal control flow for
cases where the trip count is too small to execute any code in vector
form.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D89566
2020-12-01 12:04:29 -05:00
Cullen Rhodes
cba4accda0 [LV] Clamp VF hint when unsafe
In the following loop the dependence distance is 2 and can only be
vectorized if the vector length is no larger than this.

  void foo(int *a, int *b, int N) {
    #pragma clang loop vectorize(enable) vectorize_width(4)
    for (int i=0; i<N; ++i) {
      a[i + 2] = a[i] + b[i];
    }
  }

However, when specifying a VF of 4 via a loop hint this loop is
vectorized. According to [1][2], loop hints are ignored if the
optimization is not safe to apply.

This patch introduces a check to bail of vectorization if the user
specified VF is greater than the maximum feasible VF, unless explicitly
forced with '-force-vector-width=X'.

[1] https://llvm.org/docs/LangRef.html#llvm-loop-vectorize-and-llvm-loop-interleave
[2] https://clang.llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations

Reviewed By: sdesmalen, fhahn, Meinersbur

Differential Revision: https://reviews.llvm.org/D90687
2020-12-01 11:30:34 +00:00
Caroline Concatto
4b0ef2b075 [NFC][CostModel]Extend class IntrinsicCostAttributes to use ElementCount Type
This patch replaces the attribute  `unsigned VF`  in the class
IntrinsicCostAttributes by `ElementCount VF`.
This is a non-functional change to help upcoming patches to compute the cost
model for scalable vector inside this class.

Differential Revision: https://reviews.llvm.org/D91532
2020-12-01 11:12:51 +00:00
Sjoerd Meijer
f44ba25135 ExtractValue instruction costs
Instruction ExtractValue wasn't handled in
LoopVectorizationCostModel::getInstructionCost(). As a result, it was modeled
as a mul which is not really accurate. Since it is free (most of the times),
this now gets a cost of 0 using getInstructionCost.

This is a follow-up of D92208, that required changing this regression test.
In a follow up I will look at InsertValue which also isn't handled yet.

Differential Revision: https://reviews.llvm.org/D92317
2020-12-01 10:42:23 +00:00
Florian Hahn
fe83adb05a [VPlan] Use VPUser to manage VPPredInstPHIRecipe operand (NFC).
VPPredInstPHIRecipe is one of the recipes that was missed during the
initial conversion. This patch adjusts the recipe to also manage its
operand using VPUser.
2020-11-30 13:09:58 +00:00
Fangrui Song
5408fdcd78 [VPlan] Fix -Wunused-variable after a813090072 2020-11-29 10:38:01 -08:00
Florian Hahn
4bc9b909d7 [VPlan] Use VPValue and VPUser ops to print VPReplicateRecipe. 2020-11-29 18:28:27 +00:00
Florian Hahn
a813090072 [VPlan] Manage stored values of interleave groups using VPUser (NFC)
Interleave groups also depend on the values they store. Manage the
stored values as VPUser operands. This is currently a NFC, but is
required to allow VPlan transforms and to manage generated vector values
exclusively in VPTransformState.
2020-11-29 17:24:36 +00:00
Florian Hahn
ae008798a4 [VPlan] Use VPTransformState::set in widenGEP.
This patch updates widenGEP to manage the resulting vector values using
the VPValue of VPWidenGEP recipe.
2020-11-27 17:01:55 +00:00
Sjoerd Meijer
10ad64aa3b [SLP] Dump Tree costs. NFC.
This adds LLVM_DEBUG messages to dump the (intermediate) tree cost
calculations, which is useful to trace and see how the final cost is
calculated.
2020-11-27 11:37:33 +00:00
Florian Hahn
bd0b1311db [VPlan] Turn VPReplicateRecipe into a VPValue.
Update VPReplicateRecipe to inherit from VPValue. This still does not
update scalarizeInstruction to set the result for the VPValue of
VPReplicateRecipe, because this first requires tracking scalar values in
VPTransformState.

Reviewed By: reames

Differential Revision: https://reviews.llvm.org/D91500
2020-11-26 13:50:24 +00:00
Cullen Rhodes
1ba4b82f67 [LAA] NFC: Rename [get]MaxSafeRegisterWidth -> [get]MaxSafeVectorWidthInBits
MaxSafeRegisterWidth is a misnomer since it actually returns the maximum
safe vector width. Register suggests it relates directly to a physical
register where it could be a vector spanning one or more physical
registers.

Reviewed By: sdesmalen

Differential Revision: https://reviews.llvm.org/D91727
2020-11-25 13:06:26 +00:00
Florian Hahn
ad5b83ddcf [VPlan] Add VPReductionSC to VPUser::classof, unify VPValue IDs.
This is a follow-up to 00a6601136 to make
isa<VPReductionRecipe> work and unifies the VPValue ID names, by making
sure they all consistently start with VPV*.
2020-11-25 11:08:25 +00:00
David Green
e0c479cd0e [VPlan] Switch VPWidenRecipe to be a VPValue
Similar to other patches, this makes VPWidenRecipe a VPValue. Because of
the way it interacts with the reduction code it also slightly alters the
way that VPValues are registered, removing the up front NeedDef and
using getOrAddVPValue to create them on-demand if needed instead.

Differential Revision: https://reviews.llvm.org/D88447
2020-11-25 08:25:06 +00:00
David Green
00a6601136 [VPlan] Turn VPReductionRecipe into a VPValue
This converts the VPReductionRecipe into a VPValue, like other
VPRecipe's in preparation for traversing def-use chains. It also makes
it a VPUser, now storing the used VPValues as operands.

It doesn't yet change how the VPReductionRecipes are created. It will
need to call replaceAllUsesWith from the original recipe they replace,
but that is not done yet as VPWidenRecipe need to be created first.

Differential Revision: https://reviews.llvm.org/D88382
2020-11-25 08:25:05 +00:00
Philip Reames
10ddb927c1 [SCEV] Use isa<> pattern for testing for CouldNotCompute [NFC]
Some older code - and code copied from older code - still directly tested against the singelton result of SE::getCouldNotCompute.  Using the isa<SCEVCouldNotCompute> form is both shorter, and more readable.
2020-11-24 18:47:49 -08:00