Include the complete list of threads of all running processes
in the FreeBSDKernel plugin. This makes it possible to inspect
the states (including partial register dumps from PCB) of all kernel
and userspace threads at the time of crash, or at the time of reading
/dev/mem first.
Differential Revision: https://reviews.llvm.org/D116255
This reverts commit 640beb38e7.
That commit caused performance degradtion in Quicksilver test QS:sGPU and a functional test failure in (rocPRIM rocprim.device_segmented_radix_sort).
Reverting until we have a better solution to s_cselect_b64 codegen cleanup
Change-Id: Ibf8e397df94001f248fba609f072088a46abae08
Reviewed By: kzhuravl
Differential Revision: https://reviews.llvm.org/D115960
Change-Id: Id169459ce4dfffa857d5645a0af50b0063ce1105
D116372, while fixing one kind of a race, ended up creating a new one.
The new issue could occur when one inferior thread exits while another
thread initiates termination of the entire process (exit_group(2)).
With some bad luck, we could start processing the exit notification
(PTRACE_EVENT_EXIT) only to have the become unresponsive (ESRCH) in the
middle of the MonitorCallback function. This function would then delete
the thread from our list even though it wasn't completely dead (it stays
zombified until we read the WIFEXITED event). The linux kernel will not
deliver the exited event for the entire process until we process
individual thread exits.
In a pre-D116372 world, this wouldn't be a problem because we would read
this event (even though we would not know what to do with it) with
waitpid(-1). Now, when we issue invididual waitpids, this event will
never be picked up, and we end up hanging.
The fix for this is actually quite simple -- don't delete the thread in
this situation. The thread will be deleted when the WIFEXITED event
comes.
This situation was kind of already tested by
TestCreateDuringInstructionStep (which is how I found this problem), but
it was mostly accidental, so I am also creating a dedicated test which
reproduces this situation.
This allows access type be printed when running `lldb-test -dump-ast` and
`lldb-test -dump-clang-ast`.
Differential Revision: https://reviews.llvm.org/D115062
Implementation is based on the "expected type" as used for
designated-initializers in braced init lists. This means it can deduce the type
in some cases where it's not written:
void foo(Widget);
foo({ /*help here*/ });
Only basic constructor calls are in scope of this patch, excluded are:
- aggregate initialization (no help is offered for aggregates)
- initializer_list initialization (no help is offered for these constructors)
Fixes https://github.com/clangd/clangd/issues/306
Differential Revision: https://reviews.llvm.org/D116317
Both serve the same purpose (finding shared libraries) and allow one to
launch a dynamically linked executable by just specifying the platform
sysroot.
The lldb-server code is currently set up in a way that each
NativeProcess instance does its own waitpid handling. This works fine
for BSDs, where the code can do a waitpid(process_id), and get
information for all threads in that process.
The situation is trickier on linux, because waitpid(pid) will only
return information for the main thread of the process (one whose tid ==
pid). For this reason the linux code does a waitpid(-1), to get
information for all threads. This was fine while we were supporting just
a single process, but becomes a problem when we have multiple processes
as they end up stealing each others events.
There are two possible solutions to this problem:
- call waitpid(-1) centrally, and then dispatch the events to the
appropriate process
- have each process call waitpid(tid) for all the threads it manages
This patch implements the second approach. Besides fitting better into
the existing design, it also has the added benefit of ensuring
predictable ordering for thread/process creation events (which come in
pairs -- one for the parent and one for the child). The first approach
OTOH, would make this ordering even more complicated since we would
have to keep the half-threads hanging in mid-air until we find the
process we should attach them to.
The downside to this approach is an increased number of syscalls (one
waitpid for each thread), but I think we're pretty far from optimizing
things like this, and so the cleanliness of the design is worth it.
The included test reproduces the circumstances which should demonstrate
the bug (which manifests as a hung test), but I have not been able to
get it to fail. The only place I've seen this failure modes are very
rare hangs in the thread sanitizer tests (tsan forks an addr2line
process to produce its error messages).
Differential Revision: https://reviews.llvm.org/D116372
This is a re-submission of 24d2405588
without the hunks in HostNativeThreadBase.{h,cpp}, which break builds
on Windows.
Identified with modernize-use-nullptr.
This reverts commit 913457acf0.
It again broke builds on Windows:
lldb/source/Host/common/HostNativeThreadBase.cpp(37,14): error:
assigning to 'lldb::thread_result_t' (aka 'unsigned int') from
incompatible type 'std::nullptr_t'
This is a re-submission of 24d2405588
without the hunk in HostNativeThreadBase.h, which breaks builds on
Windows.
Identified with modernize-use-nullptr.
This reverts commit 24d2405588.
Breaks building on Windows:
../../lldb/include\lldb/Host/HostNativeThreadBase.h(49,36): error:
cannot initialize a member subobject of type 'lldb::thread_result_t'
(aka 'unsigned int') with an rvalue of type 'std::nullptr_t'
lldb::thread_result_t m_result = nullptr;
^~~~~~~
1 error generated.
This small patch adds two useful improvements:
- allows one to specify the emulator path as a bare filename, and have
it be looked up in the PATH
- allows one to leave the path empty and have the filename be derived
from the architecture.
The MonitorCallback function was assuming that the "exited" argument is
set whenever a thread exits, but the caller was only setting that flag
for the main thread.
This patch deletes the argument altogether, and lets MonitorCallback
compute what it needs itself.
This is almost NFC, since previously we would end up in the
"GetSignalInfo failed for unknown reasons" branch, which was doing the
same thing -- forgetting about the thread.
Remove the Mangled::operator! and Mangled::operator void* where the
comments in header and implementation files disagree and replace them
with operator bool.
This fix PR52702 as https://reviews.llvm.org/D106837 used the buggy
Mangled::operator! in Symbol::SynthesizeNameIfNeeded. For example,
consider the symbol "puts" in a hello world C program:
// Inside Symbol::SynthesizeNameIfNeeded
(lldb) p m_mangled
(lldb_private::Mangled) $0 = (m_mangled = None, m_demangled = "puts")
(lldb) p !m_mangled
(bool) $1 = true # should be false!!
This leads to Symbol::SynthesizeNameIfNeeded overwriting m_demangled
part of Mangled (in this case "puts").
In conclusion, this patch turns
callq 0x401030 ; symbol stub for: ___lldb_unnamed_symbol36
back into
callq 0x401030 ; symbol stub for: puts .
Differential Revision: https://reviews.llvm.org/D116217
This patch add the ability to cache the manual DWARF indexing results to disk for faster subsequent debug sessions. Manual DWARF indexing is time consuming and causes all DWARF to be fully parsed and indexed each time you debug a binary that doesn't have an acceptable accelerator table. Acceptable accelerator tables include .debug_names in DWARF5 or Apple accelerator tables.
This patch breaks up testing by testing all of the encoding and decoding of required C++ objects in a gtest unit test, and then has a test to verify the debug info cache is generated correctly.
This patch also adds the ability to track when a symbol table or DWARF index is loaded or saved to the cache in the "statistics dump" command. This is essential to know in statistics as it can help explain why a debug session was slower or faster than expected.
Reviewed By: labath, wallace
Differential Revision: https://reviews.llvm.org/D115951
Support three new keys in the qProcessInfo response from the remote
gdb stub to handle the case of attaching to a core running some type
of standalone/firmware code and the stub knows the UUID and load
address-or-slide for the binary. There will be no proper DynamicLoader
plugin in this scenario, but we can try to locate and load the binary
into lldb at the correct offset.
Differential Revision: https://reviews.llvm.org/D116211
rdar://75191077
Introduce initial support for using libkvm on FreeBSD. The library
can be used as an alternate implementation for processing kernel
coredumps but it can also be used to access live kernel memory through
specifying "/dev/mem" as the core file, i.e.:
lldb --core /dev/mem /boot/kernel/kernel
Differential Revision: https://reviews.llvm.org/D116005
This finishes the GetSupportedArchitectureAtIndex migration. There are
opportunities to simplify this even further, but I am going to leave
that to the platform owners.
Differential Revision: https://reviews.llvm.org/D116028
Version 2 of 'main bin spec' LC_NOTE allows for the specification
of a slide of where the binary is loaded in the corefile virtual
address space. It also adds a (currently unused) platform field
for the main binary.
Some corefile creators will only have a UUID and an offset to be
applied to the binary.
Changed TestFirmwareCorefiles.py to test this new form of
'main bin spec' with a slide, and also to run on both x86_64
and arm64 macOS systems.
Differential Revision: https://reviews.llvm.org/D116094
rdar://85938455
This reverts commit cc56c66f27.
Fixed a bad assertion, the target of a UsingShadowDecl must not have
*local* qualifiers, but it can be a typedef whose underlying type is qualified.
Currently there's no way to find the UsingDecl that a typeloc found its
underlying type through. Compare to DeclRefExpr::getFoundDecl().
Design decisions:
- a sugar type, as there are many contexts this type of use may appear in
- UsingType is a leaf like TypedefType, the underlying type has no TypeLoc
- not unified with UnresolvedUsingType: a single name is appealing,
but being sometimes-sugar is often fiddly.
- not unified with TypedefType: the UsingShadowDecl is not a TypedefNameDecl or
even a TypeDecl, and users think of these differently.
- does not cover other rarer aliases like objc @compatibility_alias,
in order to be have a concrete API that's easy to understand.
- implicitly desugared by the hasDeclaration ASTMatcher, to avoid
breaking existing patterns and following the precedent of ElaboratedType.
Scope:
- This does not cover types associated with template names introduced by
using declarations. A future patch should introduce a sugar TemplateName
variant for this. (CTAD deduced types fall under this)
- There are enough AST matchers to fix the in-tree clang-tidy tests and
probably any other matchers, though more may be useful later.
Caveats:
- This changes a fairly common pattern in the AST people may depend on matching.
Previously, typeLoc(loc(recordType())) matched whether a struct was
referred to by its original scope or introduced via using-decl.
Now, the using-decl case is not matched, and needs a separate matcher.
This is similar to the case of typedefs but nevertheless both adds
complexity and breaks existing code.
Differential Revision: https://reviews.llvm.org/D114251
This starts to fix the other half of the lifetime problems in this code
-- dangling references. SB objects created on the stack will go away
when the function returns, which is a problem if the python code they
were meant for stashes a reference to them somewhere. Most of the time
this goes by unnoticed, as the code rarely has a reason to store these,
but in case it does, we shouldn't respond by crashing.
This patch fixes the management for a couple of SB objects (Debugger,
Frame, Thread). The SB objects are now created on the heap, and
their ownership is immediately passed on to SWIG, which will ensure they
are destroyed when the last python reference goes away. I will handle
the other objects in separate patches.
I include one test which demonstrates the lifetime issue for SBDebugger.
Strictly speaking, one should create a test case for each of these
objects and each of the contexts they are being used. That would require
figuring out how to persist (and later access) each of these objects.
Some of those may involve a lot of hoop-jumping (we can run python code
from within a frame-format string). I don't think that is
necessary/worth it since the new wrapper functions make it very hard to
get this wrong.
Differential Revision: https://reviews.llvm.org/D115925
This setting is for variables we want to pass to the emulator only --
then will be automatically removed from the target environment by our
environment diffing code. This variable can be used to pass various
QEMU_*** variables (although most of these can be passed through
emulator-args as well), as well as any other variables that can affect
the operation of the emulator (e.g. LD_LIBRARY_PATH).
Introduce a FreeBSDKernel plugin that provides the ability to read
FreeBSD kernel core dumps. The plugin utilizes libfbsdvmcore to provide
support for both "full memory dump" and minidump formats across variety
of architectures supported by FreeBSD. It provides the ability to read
kernel memory, as well as the crashed thread status with registers
on arm64, i386 and x86_64.
Differential Revision: https://reviews.llvm.org/D114911
Introduce a FreeBSDKernel plugin that provides the ability to read
FreeBSD kernel core dumps. The plugin utilizes libfbsdvmcore to provide
support for both "full memory dump" and minidump formats across variety
of architectures supported by FreeBSD. It provides the ability to read
kernel memory, as well as the crashed thread status with registers
on arm64, i386 and x86_64.
Differential Revision: https://reviews.llvm.org/D114911
Add lldb support for a Mach-O "load binary" LC_NOTE which provides
a UUID, load address/slide, and possibly a name of a binary that
should be loaded when examining the core.
struct load_binary
{
uint32_t version; // currently 1
uuid_t uuid; // all zeroes if uuid not specified
uint64_t load_address; // virtual address where the macho is loaded, UINT64_MAX if unavail
uint64_t slide; // slide to be applied to file address to get load address, 0 if unavail
char name_cstring[]; // must be nul-byte terminated c-string, '\0' alone if name unavail
} __attribute__((packed));
Differential Revision: https://reviews.llvm.org/D115494
rdar://85069250
StructuredDataImpl ownership semantics is unclear at best. Various
structures were holding a non-owning pointer to it, with a comment that
the object is owned somewhere else. From what I was able to gather that
"somewhere else" was the SBStructuredData object, but I am not sure that
all created object eventually made its way there. (It wouldn't matter
even if they did, as we are leaking most of our SBStructuredData
objects.)
Since StructuredDataImpl is just a collection of two (shared) pointers,
there's really no point in elaborate lifetime management, so this patch
replaces all StructuredDataImpl pointers with actual objects or
unique_ptrs to it. This makes it much easier to resolve SBStructuredData
leaks in a follow-up patch.
Differential Revision: https://reviews.llvm.org/D114791
With arm64e ARMv8.3 pointer authentication, lldb needs to know how
many bits are used for addressing and how many are used for pointer
auth signing. This should be determined dynamically from the inferior
system / corefile, but there are some workflows where it still isn't
recorded and we fall back on a default value that is correct on some
Darwin environments.
This patch also explicitly sets the vendor of mach-o binaries to
Apple, so we select an Apple ABI instead of a random other ABI.
It adds a function pointer formatter for systems where pointer
authentication is in use, and we can strip the ptrauth bits off
of the function pointer address and get a different value that
points to an actual symbol.
Differential Revision: https://reviews.llvm.org/D115431
rdar://84644661
This can be unsigned long or unsigned long long depending on where it's
compiled. Use the ugly portable way.
PlatformWindows.cpp:397:63: warning: format specifies type 'unsigned long long' but the argument has type 'uint64_t' (aka 'unsigned long')
The test for this functionality was failing on the darwin bot, because
the entries came out in opposite order. While this does not impact
functionality, and the algorithm that produces it is technically
deterministic (the nondeterminism comes from the contents of the host
environment), it seems like it would be more user-friendly if the
entries came out in a more predictible order.
Therefore I am adding the sort call to the actual code instead of
relaxing test expectations.
Qemu normally forwards its (host) environment variables to the emulated
process. While this works fine for most variables, there are some (few, but
fairly important) variables where this is not possible. LD_LIBRARY_PATH
is the probably the most important of those -- we don't want the library
search path for the emulated libraries to interfere with the libraries
that the emulator itself needs.
For this reason, qemu provides a mechanism (QEMU_SET_ENV,
QEMU_UNSET_ENV) to set variables only for the emulated process. This
patch makes use of that functionality to pass any user-provided
variables to the emulated process. Since we're piggy-backing on the
normal lldb environment-handling mechanism, all the usual mechanism to
provide environment (target.env-vars setting, SBLaunchInfo, etc.) work
out-of-the-box, and the only thing we need to do is to properly
construct the qemu environment variables.
This patch also adds a new setting -- target-env-vars, which represents
environment variables which are added (on top of the host environment)
to the default launch environments of all (qemu) targets. The reason for
its existence is to enable the configuration (e.g., from a startup
script) of the default launch environment, before any target is created.
The idea is that this would contain the variables (like the
aforementioned LD_LIBRARY_PATH) common to all targets being debugged on
the given system. The user is, of course, free to customize the
environment for a particular target in the usual manner.
The reason I do not want to use/recommend the "global" version of the
target.env-vars setting for this purpose is that the setting would apply
to all targets, whereas the settings (their values) I have mentioned
would be specific to the given platform.
Differential Revision: https://reviews.llvm.org/D115246