Instead of failing when it encounters a reference to an unknown symbol, Symbol DCE should ignore them. References to unknown symbols do not affect the overall function of Symbol DCE, so it should not need to fail when it encounters one.
In general, requiring that symbol references always be valid rather than only when necessary can be overly conservative.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D116047
LICM checks that nested ops depend only on values defined outside
before performing hoisting.
However, it specifically omits to check for terminators which can
lead to SSA violations.
This revision fixes the incorrect behavior.
Differential Revision: https://reviews.llvm.org/D116657
Querying threads directly from the thread pool fails if there is no thread pool or if multithreading is not enabled. Returns 1 by default.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D116259
This patch fixes a bug in loop fusion pass where the source loop was removed
even when the fused loop did not cover all iterations of the source loop.
This was because the fast hueristic check for checking if source loop and
fused loop have same iterations did not take into account steps in loop.
Reviewed By: dcaballe, bondhugula
Differential Revision: https://reviews.llvm.org/D114164
MLIR supports recursive types but they could not be handled by the conversion
infrastructure directly as it would result in infinite recursion in
`convertType` for elemental types. Support this case by keeping the "call
stack" of nested type conversions in the TypeConverter class and by passing it
as an optional argument to the individual conversion callback. The callback can
then check if a specific type is present on the stack more than once to detect
and handle the recursive case.
This approach is preferred to the alternative approach of having a separate
callback dedicated to handling only the recursive case as the latter was
observed to introduce ~3% time overhead on a 50MB IR file even if it did not
contain recursive types.
This approach is also preferred to keeping a local stack in type converters
that need to handle recursive types as that would compose poorly in case of
out-of-tree or cross-project extensions.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D113579
The specific description is [[ https://llvm.discourse.group/t/adding-unsigned-integer-ceil-and-floor-in-std-dialect/4541 | Adding unsigned integer ceil in Std Dialect ]] .
When we lower ceilDivOp this will generate below code, sometimes we know m and n are unsigned intergal.Here are some redundant judgments about positive and negative.
So we need to add some unsigned operations to simplify the instructions.
```
ceilDiv(n, m)
x = (m > 0) ? -1 : 1
return (n*m>0) ? ((n+x) / m) + 1 : - (-n / m)
```
unsigned operations:
```
ceilDivU(n, m)
return n ==0 ? 0 : ((n - 1) / m) + 1
```
Reviewed By: Mogball
Differential Revision: https://reviews.llvm.org/D113363
Previously we didn't materialize conversions for arguments in certain
cases as the implicit type propagation was being heavily relied on
by many patterns. Now that those patterns have been fixed to
properly handle type conversions, we can drop the special behavior.
Differential Revision: https://reviews.llvm.org/D113233
The current implementation invokes materializations
whenever an input operand does not have a mapping for the
desired type, i.e. it requires materialization at the earliest possible
point. This conflicts with goal of dialect conversion (and also the
current documentation) which states that a materialization is only
required if the materialization is supposed to persist after the
conversion process has finished.
This revision refactors this such that whenever a target
materialization "might" be necessary, we insert an
unrealized_conversion_cast to act as a temporary materialization.
This allows for deferring the invocation of the user
materialization hooks until the end of the conversion process,
where we actually have a better sense if it's actually
necessary. This has several benefits:
* In some cases a target materialization hook is no longer
necessary
When performing a full conversion, there are some situations
where a temporary materialization is necessary. Moving forward,
these users won't need to provide any target materializations,
as the temporary materializations do not require the user to
provide materialization hooks.
* getRemappedValue can now handle values that haven't been
converted yet
Before this commit, it wasn't well supported to get the remapped
value of a value that hadn't been converted yet (making it
difficult/impossible to convert multiple operations in many
situations). This commit updates getRemappedValue to properly
handle this case by inserting temporary materializations when
necessary.
Another code-health related benefit is that with this change we
can move a majority of the complexity related to materializations
to the end of the conversion process, instead of handling adhoc
while conversion is happening.
Differential Revision: https://reviews.llvm.org/D111620
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
Add folding rule for std.or op when an operand has all bits set.
or(x, <all bits set>) -> <all bits set>
Differential Revision: https://reviews.llvm.org/D111206
This was causing a subsequent assert/crash when a type converter failed to convert a block argument.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D110985
New mode option that allows for either running the default fusion kind that happens today or doing either of producer-consumer or sibling fusion. This will also be helpful to minimize the compile-time of the fusion tests.
Reviewed By: bondhugula, dcaballe
Differential Revision: https://reviews.llvm.org/D110102
This fixes a bug where we discover new information about the arguments of an
already executable edge, but don't visit the arguments. We only visit the arguments, and not the block itself, so this commit shouldn't really affect performance at all.
Fixes PR#51871
Differential Revision: https://reviews.llvm.org/D110197
The discussion on forum:
https://llvm.discourse.group/t/bug-in-partial-dialect-conversion/4115
The `applyPartialConversion` didn't handle the operations, that were
marked as illegal inside dynamic legality callback.
Instead of reporting error, if such operation was not converted to legal set,
the method just added it to `unconvertedSet` in the same way as unknown operations.
This patch fixes that and handle dynamically illegal operations as well.
The patch includes 2 fixes for existing passes:
* `tensor-bufferize` - explicitly mark `std.return` as legal.
* `convert-parallel-loops-to-gpu` - ugly fix with marking visited operations
to avoid recursive legality checks.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D108505
It is the case that, for all positive a and b such that b divides a
(e mod (a * b)) mod b = e mod b. For example, ((d0 mod 35) mod 5) can
be simplified to (d0 mod 5), but ((d0 mod 35) mod 4) cannot be simplified
further (x = 36 is a counterexample).
This change enables more complex simplifications. For example,
((d0 * 72 + d1) mod 144) mod 9 can now simplify to (d0 * 72 + d1) mod 9
and thus to d1 mod 9. Expressions with chained modulus operators are
reasonably common in tensor applications, and this change _should_
improve code generation for such expressions.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D109930
Both copy/alloc ops are using memref dialect after this change.
Reviewed By: silvas, mehdi_amini
Differential Revision: https://reviews.llvm.org/D109480
Add loop coalesce utility for affine.for. This expects loops to have
been normalized a-priori. This works for both constant as well non
constant upper bounds having single/multiple result upper bound affine
map.
With contributions from Arnab Dutta and Uday Bondhugula.
Reviewed By: bondhugula, ayzhuang
Differential Revision: https://reviews.llvm.org/D108126
Currently the builtin dialect is the default namespace used for parsing
and printing. As such module and func don't need to be prefixed.
In the case of some dialects that defines new regions for their own
purpose (like SpirV modules for example), it can be beneficial to
change the default dialect in order to improve readability.
Differential Revision: https://reviews.llvm.org/D107236
This revision fixes a bug where an operation would get replaced with
a pre-existing constant that didn't dominate it. This can occur when
a pattern inserts operations to be folded at the beginning of the
constants insertion block. This revision fixes the bug by moving the
existing constant before the replaced operation in such cases. This is
fine because if a constant didn't already exist, a new one would have
been inserted before this operation anyways.
Differential Revision: https://reviews.llvm.org/D108498
This patch enables normalizing memrefs with MemRef_ReinterpretCastOp by
adding MemRefsNormalizable trait in the Op definition.
Signed-off-by: Haruki Imai <imaihal@jp.ibm.com>
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D107425
* Add new pass option `print-data-flow-edges`, default value `true`.
* Add new pass option `print-control-flow-edges`, default value `false`.
* Remove `PrintCFGPass`. Same functionality now provided by
`PrintOpPass`.
Differential Revision: https://reviews.llvm.org/D106342
* Visualize blocks and regions as subgraphs.
* Generate DOT file directly instead of using `GraphTraits`. `GraphTraits` does not support subgraphs.
Differential Revision: https://reviews.llvm.org/D106253
mlir/test/transforms/loop-fusion.mlir is too big and is split into mlir/test/transforms/loop-fusion.mlir, mlir/test/transforms/loop-fusion-2.mlir, mlir/test/transforms/loop-fusion-3.mlir
and mlir/test/transforms/loop-fusion-4.mlir. Further tests can be added in mlir/test/transforms/loop-fusion-4.mlir
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D106473
The presence of AffineIfOp inside AffineFor prevents fusion of the other loops to happen. For example:
```
affine.for %i0 = 0 to 10 {
affine.store %cf7, %a[%i0] : memref<10xf32>
}
affine.for %i1 = 0 to 10 {
%v0 = affine.load %a[%i1] : memref<10xf32>
affine.store %v0, %b[%i1] : memref<10xf32>
}
affine.for %i2 = 0 to 10 {
affine.if #set(%i2) {
%v0 = affine.load %b[%i2] : memref<10xf32>
}
}
```
The first two loops were not be fused because of `affine.if` inside the last `affine.for`.
The issue seems to come from a conservative constraint that does not allow fusion if there are ops whose number of regions != 0 (affine.if is one of them).
This patch just removes such a constraint when`affine.if` is inside `affine.for`. The existing `canFuseLoops` method is able to handle `affine.if` correctly.
Reviewed By: bondhugula, vinayaka-polymage
Differential Revision: https://reviews.llvm.org/D105963
Historically the builtin dialect has had an empty namespace. This has unfortunately created a very awkward situation, where many utilities either have to special case the empty namespace, or just don't work at all right now. This revision adds a namespace to the builtin dialect, and starts to cleanup some of the utilities to no longer handle empty namespaces. For now, the assembly form of builtin operations does not require the `builtin.` prefix. (This should likely be re-evaluated though)
Differential Revision: https://reviews.llvm.org/D105149
This CL adds a new RegionBranchTerminatorOpInterface to query information about operands that can be
passed to successor regions. Similar to the BranchOpInterface, it allows to freely define the
involved operands. However, in contrast to the BranchOpInterface, it expects an additional region
number to distinguish between various use cases which might require different operands passed to
different regions.
Moreover, we added new utility functions (namely getMutableRegionBranchSuccessorOperands and
getRegionBranchSuccessorOperands) to query (mutable) operand ranges for operations equiped with the
ReturnLike trait and/or implementing the newly added interface. This simplifies reasoning about
terminators in the scope of the nested regions.
We also adjusted the SCF.ConditionOp to benefit from the newly added capabilities.
Differential Revision: https://reviews.llvm.org/D105018
- Change walkReturnOperations() to be a non-template and look at block terminator
for ReturnLike trait.
- Clarify description of validateSupportedControlFlow
- Eliminate unused argument in Backedges::recurse.
- Eliminate repeated calls to getFunction()
- Fix wording for non-SCF loop failure
Differential Revision: https://reviews.llvm.org/D106373
Changes include the following:
1. Single iteration reduction loops being sibling fused at innermost insertion level
are skipped from being considered as sequential loops.
Otherwise, the slice bounds of these loops is reset.
2. Promote loops that are skipped in previous step into outer loops.
3. Two utility function - buildSliceTripCountMap, getSliceIterationCount - are moved from
mlir/lib/Transforms/Utils/LoopFusionUtils.cpp to mlir/lib/Analysis/Utils.cpp
Reviewed By: bondhugula, vinayaka-polymage
Differential Revision: https://reviews.llvm.org/D104249
* Split memref.dim into two operations: memref.dim and tensor.dim. Both ops have the same builder interface and op argument names, so that they can be used with templates in patterns that apply to both tensors and memrefs (e.g., some patterns in Linalg).
* Add constant materializer to TensorDialect (needed for folding in affine.apply etc.).
* Remove some MemRefDialect dependencies, make some explicit.
Differential Revision: https://reviews.llvm.org/D105165
Without it BufferDeallocationPass process only CloneOps created during pass itself and ignore all CloneOps that were already present in IR.
For our specific usecase:
```
func @dealloc_existing_clones(%arg0: memref<?x?xf64>, %arg1: memref<?x?xf64>) -> memref<?x?xf64> {
return %arg0 : memref<?x?xf64>
}
```
Input arguments will be freed immediately after return from function and we want to prolong lifetime for the returned argument.
To achieve this we explicitly add clones to all input memrefs and expect that BufferDeallocationPass will add correct deallocs to them (unnessesary clone+dealloc pairs will be canonicalized away later).
Differential Revision: https://reviews.llvm.org/D104973
During slice computation of affine loop fusion, detect one id as the mod
of another id w.r.t a constant in a more generic way. Restrictions on
co-efficients of the ids is removed. Also, information from the
previously calculated ids is used for simplification of affine
expressions, e.g.,
If `id1` = `id2`,
`id_n - divisor * id_q - id_r + id1 - id2 = 0`, is simplified to:
`id_n - divisor * id_q - id_r = 0`.
If `c` is a non-zero integer,
`c*id_n - c*divisor * id_q - c*id_r = 0`, is simplified to:
`id_n - divisor * id_q - id_r = 0`.
Reviewed By: bondhugula, ayzhuang
Differential Revision: https://reviews.llvm.org/D104614
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename SubTensorOp -> tensor.extract_slice, SubTensorInsertOp -> tensor.insert_slice.
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Note: This is a fixed version of https://reviews.llvm.org/D104499, which was reverted due to a missing update to two CMakeFile.txt.
Differential Revision: https://reviews.llvm.org/D104676
The main goal of this commit is to remove the dependency of Standard dialect on the Tensor dialect.
* Rename ops: SubTensorOp --> ExtractTensorOp, SubTensorInsertOp --> InsertTensorOp
* Some helper functions are (already) duplicated between the Tensor dialect and the MemRef dialect. To keep this commit smaller, this will be cleaned up in a separate commit.
* Additional dialect dependencies: Shape --> Tensor, Tensor --> Standard
* Remove dialect dependencies: Standard --> Tensor
* Move canonicalization test cases to correct dialect (Tensor/MemRef).
Differential Revision: https://reviews.llvm.org/D104499
Based on dicussion in
[this](https://llvm.discourse.group/t/remove-canonicalizer-for-memref-dim-via-shapedtypeopinterface/3641)
thread the pattern to resolve the `memref.dim` of a value that is a
result of an operation that implements the
`InferShapedTypeOpInterface` is moved to a separate pass instead of
running it as a canonicalization pass. This allows shape resolution to
happen when explicitly required, instead of automatically through a
canonicalization.
Differential Revision: https://reviews.llvm.org/D104321
This patch changes the (not recommended) static registration API from:
static PassRegistration<MyPass> reg("my-pass", "My Pass Description.");
to:
static PassRegistration<MyPass> reg;
And the explicit registration from:
void registerPass("my-pass", "My Pass Description.",
[] { return createMyPass(); });
To:
void registerPass([] { return createMyPass(); });
It is expected that Pass implementations overrides the getArgument() method
instead. This will ensure that pipeline description can be printed and parsed
back.
Differential Revision: https://reviews.llvm.org/D104421
This allows for dialects to do different post-processing depending on operations with the inliner (my use case requires different attribute propagation rules depending on call op). This hook runs before the regular processInlinedBlocks method.
Differential Revision: https://reviews.llvm.org/D104399
This revision allows for attaching "debug labels" to patterns, and provides to FrozenRewritePatternSet for filtering patterns based on these labels (in addition to the debug name of the pattern). This will greatly simplify the ability to write tests targeted towards specific patterns (in cases where many patterns may interact), will also simplify debugging pattern application by observing how application changes when enabling/disabling specific patterns.
To enable better reuse of pattern rewrite options between passes, this revision also adds a new PassUtil.td file to the Rewrite/ library that will allow for passes to easily hook into a common interface for pattern debugging. Two options are used to seed this utility, `disable-patterns` and `enable-patterns`, which are used to enable the filtering behavior indicated above.
Differential Revision: https://reviews.llvm.org/D102441
* Add `hasCanonicalizer` option to Dialect.
* Initialize canonicalizer with dialect-wide canonicalization patterns.
* Add test case to TestDialect.
Dialect-wide canonicalization patterns are useful if a canonicalization pattern does not conceptually associate with any single operation, i.e., it should not be registered as part of an operation's `getCanonicalizationPatterns` function. E.g., this is the case for canonicalization patterns that match an op interface.
Differential Revision: https://reviews.llvm.org/D103226
This provides a sizable compile time improvement by seeding
the worklist in an order that leads to less iterations of the
worklist.
This patch only changes the behavior of the Canonicalize pass
itself, it does not affect other passes that use the
GreedyPatternRewrite driver
Differential Revision: https://reviews.llvm.org/D103053
Steps for normalizing dynamic memrefs for tiled layout map
1. Check if original map is tiled layout. Only tiled layout is supported.
2. Create normalized memrefType. Dimensions that include dynamic dimensions
in the map output will be dynamic dimensions.
3. Create new maps to calculate each dimension size of new memref.
In tiled layout, the dimension size can be calculated by replacing
"floordiv <tile size>" with "ceildiv <tile size>" and
"mod <tile size>" with "<tile size>".
4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp is
dynamicSizes for new AllocOp.
5. Add the new dynamic sizes in new AllocOp.
This patch also set MemRefsNormalizable trant in CastOp and DimOp since
they used with dynamic memrefs.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D97655