//===-- Bridge.cpp -- bridge to lower to MLIR -----------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ // //===----------------------------------------------------------------------===// #include "flang/Lower/Bridge.h" #include "flang/Lower/Allocatable.h" #include "flang/Lower/CallInterface.h" #include "flang/Lower/Coarray.h" #include "flang/Lower/ConvertCall.h" #include "flang/Lower/ConvertExpr.h" #include "flang/Lower/ConvertExprToHLFIR.h" #include "flang/Lower/ConvertType.h" #include "flang/Lower/ConvertVariable.h" #include "flang/Lower/HostAssociations.h" #include "flang/Lower/IO.h" #include "flang/Lower/IterationSpace.h" #include "flang/Lower/Mangler.h" #include "flang/Lower/OpenACC.h" #include "flang/Lower/OpenMP.h" #include "flang/Lower/PFTBuilder.h" #include "flang/Lower/Runtime.h" #include "flang/Lower/StatementContext.h" #include "flang/Lower/Support/Utils.h" #include "flang/Optimizer/Builder/BoxValue.h" #include "flang/Optimizer/Builder/Character.h" #include "flang/Optimizer/Builder/FIRBuilder.h" #include "flang/Optimizer/Builder/Runtime/Assign.h" #include "flang/Optimizer/Builder/Runtime/Character.h" #include "flang/Optimizer/Builder/Runtime/Derived.h" #include "flang/Optimizer/Builder/Runtime/EnvironmentDefaults.h" #include "flang/Optimizer/Builder/Runtime/Ragged.h" #include "flang/Optimizer/Builder/Todo.h" #include "flang/Optimizer/Dialect/FIRAttr.h" #include "flang/Optimizer/Dialect/FIRDialect.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/HLFIR/HLFIROps.h" #include "flang/Optimizer/Support/FIRContext.h" #include "flang/Optimizer/Support/FatalError.h" #include "flang/Optimizer/Support/InternalNames.h" #include "flang/Optimizer/Transforms/Passes.h" #include "flang/Parser/parse-tree.h" #include "flang/Runtime/iostat.h" #include "flang/Semantics/runtime-type-info.h" #include "flang/Semantics/tools.h" #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" #include "mlir/IR/PatternMatch.h" #include "mlir/Parser/Parser.h" #include "mlir/Transforms/RegionUtils.h" #include "llvm/ADT/StringSet.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include #define DEBUG_TYPE "flang-lower-bridge" static llvm::cl::opt dumpBeforeFir( "fdebug-dump-pre-fir", llvm::cl::init(false), llvm::cl::desc("dump the Pre-FIR tree prior to FIR generation")); static llvm::cl::opt forceLoopToExecuteOnce( "always-execute-loop-body", llvm::cl::init(false), llvm::cl::desc("force the body of a loop to execute at least once")); namespace { /// Information for generating a structured or unstructured increment loop. struct IncrementLoopInfo { template explicit IncrementLoopInfo(Fortran::semantics::Symbol &sym, const T &lower, const T &upper, const std::optional &step, bool isUnordered = false) : loopVariableSym{sym}, lowerExpr{Fortran::semantics::GetExpr(lower)}, upperExpr{Fortran::semantics::GetExpr(upper)}, stepExpr{Fortran::semantics::GetExpr(step)}, isUnordered{isUnordered} {} IncrementLoopInfo(IncrementLoopInfo &&) = default; IncrementLoopInfo &operator=(IncrementLoopInfo &&x) { return x; } bool isStructured() const { return !headerBlock; } mlir::Type getLoopVariableType() const { assert(loopVariable && "must be set"); return fir::unwrapRefType(loopVariable.getType()); } // Data members common to both structured and unstructured loops. const Fortran::semantics::Symbol &loopVariableSym; const Fortran::lower::SomeExpr *lowerExpr; const Fortran::lower::SomeExpr *upperExpr; const Fortran::lower::SomeExpr *stepExpr; const Fortran::lower::SomeExpr *maskExpr = nullptr; bool isUnordered; // do concurrent, forall llvm::SmallVector localInitSymList; llvm::SmallVector sharedSymList; mlir::Value loopVariable = nullptr; mlir::Value stepValue = nullptr; // possible uses in multiple blocks // Data members for structured loops. fir::DoLoopOp doLoop = nullptr; // Data members for unstructured loops. bool hasRealControl = false; mlir::Value tripVariable = nullptr; mlir::Block *headerBlock = nullptr; // loop entry and test block mlir::Block *maskBlock = nullptr; // concurrent loop mask block mlir::Block *bodyBlock = nullptr; // first loop body block mlir::Block *exitBlock = nullptr; // loop exit target block }; /// Helper class to generate the runtime type info global data. This data /// is required to describe the derived type to the runtime so that it can /// operate over it. It must be ensured this data will be generated for every /// derived type lowered in the current translated unit. However, this data /// cannot be generated before FuncOp have been created for functions since the /// initializers may take their address (e.g for type bound procedures). This /// class allows registering all the required runtime type info while it is not /// possible to create globals, and to generate this data after function /// lowering. class RuntimeTypeInfoConverter { /// Store the location and symbols of derived type info to be generated. /// The location of the derived type instantiation is also stored because /// runtime type descriptor symbol are compiler generated and cannot be mapped /// to user code on their own. struct TypeInfoSymbol { Fortran::semantics::SymbolRef symbol; mlir::Location loc; }; public: void registerTypeInfoSymbol(Fortran::lower::AbstractConverter &converter, mlir::Location loc, Fortran::semantics::SymbolRef typeInfoSym) { if (seen.contains(typeInfoSym)) return; seen.insert(typeInfoSym); if (!skipRegistration) { registeredTypeInfoSymbols.emplace_back(TypeInfoSymbol{typeInfoSym, loc}); return; } // Once the registration is closed, symbols cannot be added to the // registeredTypeInfoSymbols list because it may be iterated over. // However, after registration is closed, it is safe to directly generate // the globals because all FuncOps whose addresses may be required by the // initializers have been generated. Fortran::lower::createRuntimeTypeInfoGlobal(converter, loc, typeInfoSym.get()); } void createTypeInfoGlobals(Fortran::lower::AbstractConverter &converter) { skipRegistration = true; for (const TypeInfoSymbol &info : registeredTypeInfoSymbols) Fortran::lower::createRuntimeTypeInfoGlobal(converter, info.loc, info.symbol.get()); registeredTypeInfoSymbols.clear(); } private: /// Store the runtime type descriptors that will be required for the /// derived type that have been converted to FIR derived types. llvm::SmallVector registeredTypeInfoSymbols; /// Create derived type runtime info global immediately without storing the /// symbol in registeredTypeInfoSymbols. bool skipRegistration = false; /// Track symbols symbols processed during and after the registration /// to avoid infinite loops between type conversions and global variable /// creation. llvm::SmallSetVector seen; }; class DispatchTableConverter { struct DispatchTableInfo { const Fortran::semantics::DerivedTypeSpec *typeSpec; mlir::Location loc; }; public: void registerTypeSpec(mlir::Location loc, const Fortran::semantics::DerivedTypeSpec *typeSpec) { assert(typeSpec && "type spec is null"); std::string dtName = Fortran::lower::mangle::mangleName(*typeSpec); if (seen.contains(dtName) || dtName.find("__fortran") != std::string::npos) return; seen.insert(dtName); registeredDispatchTableInfo.emplace_back(DispatchTableInfo{typeSpec, loc}); } void createDispatchTableOps(Fortran::lower::AbstractConverter &converter) { for (const DispatchTableInfo &info : registeredDispatchTableInfo) { std::string dtName = Fortran::lower::mangle::mangleName(*info.typeSpec); const Fortran::semantics::DerivedTypeSpec *parent = Fortran::evaluate::GetParentTypeSpec(*info.typeSpec); fir::FirOpBuilder &builder = converter.getFirOpBuilder(); fir::DispatchTableOp dt = builder.createDispatchTableOp( info.loc, dtName, parent ? Fortran::lower::mangle::mangleName(*parent) : ""); auto insertPt = builder.saveInsertionPoint(); Fortran::semantics::SymbolVector bindings = Fortran::semantics::CollectBindings(*info.typeSpec->scope()); if (!bindings.empty()) builder.createBlock(&dt.getRegion()); for (const Fortran::semantics::SymbolRef &binding : bindings) { const auto *details = binding.get().detailsIf(); std::string bindingName = Fortran::lower::mangle::mangleName(details->symbol()); builder.create( info.loc, mlir::StringAttr::get(builder.getContext(), binding.get().name().ToString()), mlir::SymbolRefAttr::get(builder.getContext(), bindingName)); } if (!bindings.empty()) builder.create(info.loc); builder.restoreInsertionPoint(insertPt); } registeredDispatchTableInfo.clear(); } private: /// Store the semantic DerivedTypeSpec that will be required to generate the /// dispatch table. llvm::SmallVector registeredDispatchTableInfo; /// Track processed type specs to avoid multiple creation. llvm::StringSet<> seen; }; using IncrementLoopNestInfo = llvm::SmallVector; } // namespace //===----------------------------------------------------------------------===// // FirConverter //===----------------------------------------------------------------------===// namespace { /// Traverse the pre-FIR tree (PFT) to generate the FIR dialect of MLIR. class FirConverter : public Fortran::lower::AbstractConverter { public: explicit FirConverter(Fortran::lower::LoweringBridge &bridge) : Fortran::lower::AbstractConverter(bridge.getLoweringOptions()), bridge{bridge}, foldingContext{bridge.createFoldingContext()} {} virtual ~FirConverter() = default; /// Convert the PFT to FIR. void run(Fortran::lower::pft::Program &pft) { // Preliminary translation pass. // - Lower common blocks from the PFT common block list that contains a // consolidated list of the common blocks (with the initialization if any in // the Program, and with the common block biggest size in all its // appearance). This is done before lowering any scope declarations because // it is not know at the local scope level what MLIR type common blocks // should have to suit all its usage in the compilation unit. lowerCommonBlocks(pft.getCommonBlocks()); // - Declare all functions that have definitions so that definition // signatures prevail over call site signatures. // - Define module variables and OpenMP/OpenACC declarative construct so // that they are available before lowering any function that may use // them. bool hasMainProgram = false; for (Fortran::lower::pft::Program::Units &u : pft.getUnits()) { std::visit(Fortran::common::visitors{ [&](Fortran::lower::pft::FunctionLikeUnit &f) { if (f.isMainProgram()) hasMainProgram = true; declareFunction(f); }, [&](Fortran::lower::pft::ModuleLikeUnit &m) { lowerModuleDeclScope(m); for (Fortran::lower::pft::FunctionLikeUnit &f : m.nestedFunctions) declareFunction(f); }, [&](Fortran::lower::pft::BlockDataUnit &b) {}, [&](Fortran::lower::pft::CompilerDirectiveUnit &d) {}, }, u); } // Primary translation pass. for (Fortran::lower::pft::Program::Units &u : pft.getUnits()) { std::visit( Fortran::common::visitors{ [&](Fortran::lower::pft::FunctionLikeUnit &f) { lowerFunc(f); }, [&](Fortran::lower::pft::ModuleLikeUnit &m) { lowerMod(m); }, [&](Fortran::lower::pft::BlockDataUnit &b) {}, [&](Fortran::lower::pft::CompilerDirectiveUnit &d) { setCurrentPosition( d.get().source); mlir::emitWarning(toLocation(), "ignoring all compiler directives"); }, }, u); } /// Once all the code has been translated, create runtime type info /// global data structure for the derived types that have been /// processed. createGlobalOutsideOfFunctionLowering( [&]() { runtimeTypeInfoConverter.createTypeInfoGlobals(*this); }); /// Create the dispatch tables for derived types. createGlobalOutsideOfFunctionLowering( [&]() { dispatchTableConverter.createDispatchTableOps(*this); }); // Create the list of any environment defaults for the runtime to set. The // runtime default list is only created if there is a main program to ensure // it only happens once and to provide consistent results if multiple files // are compiled separately. if (hasMainProgram) createGlobalOutsideOfFunctionLowering([&]() { // FIXME: Ideally, this would create a call to a runtime function // accepting the list of environment defaults. That way, we would not // need to add an extern pointer to the runtime and said pointer would // not need to be generated even if no defaults are specified. // However, generating main or changing when the runtime reads // environment variables is required to do so. fir::runtime::genEnvironmentDefaults(*builder, toLocation(), bridge.getEnvironmentDefaults()); }); } /// Declare a function. void declareFunction(Fortran::lower::pft::FunctionLikeUnit &funit) { setCurrentPosition(funit.getStartingSourceLoc()); for (int entryIndex = 0, last = funit.entryPointList.size(); entryIndex < last; ++entryIndex) { funit.setActiveEntry(entryIndex); // Calling CalleeInterface ctor will build a declaration // mlir::func::FuncOp with no other side effects. // TODO: when doing some compiler profiling on real apps, it may be worth // to check it's better to save the CalleeInterface instead of recomputing // it later when lowering the body. CalleeInterface ctor should be linear // with the number of arguments, so it is not awful to do it that way for // now, but the linear coefficient might be non negligible. Until // measured, stick to the solution that impacts the code less. Fortran::lower::CalleeInterface{funit, *this}; } funit.setActiveEntry(0); // Compute the set of host associated entities from the nested functions. llvm::SetVector escapeHost; for (Fortran::lower::pft::FunctionLikeUnit &f : funit.nestedFunctions) collectHostAssociatedVariables(f, escapeHost); funit.setHostAssociatedSymbols(escapeHost); // Declare internal procedures for (Fortran::lower::pft::FunctionLikeUnit &f : funit.nestedFunctions) declareFunction(f); } /// Collects the canonical list of all host associated symbols. These bindings /// must be aggregated into a tuple which can then be added to each of the /// internal procedure declarations and passed at each call site. void collectHostAssociatedVariables( Fortran::lower::pft::FunctionLikeUnit &funit, llvm::SetVector &escapees) { const Fortran::semantics::Scope *internalScope = funit.getSubprogramSymbol().scope(); assert(internalScope && "internal procedures symbol must create a scope"); auto addToListIfEscapee = [&](const Fortran::semantics::Symbol &sym) { const Fortran::semantics::Symbol &ultimate = sym.GetUltimate(); const auto *namelistDetails = ultimate.detailsIf(); if (ultimate.has() || Fortran::semantics::IsProcedurePointer(ultimate) || Fortran::semantics::IsDummy(sym) || namelistDetails) { const Fortran::semantics::Scope &ultimateScope = ultimate.owner(); if (ultimateScope.kind() == Fortran::semantics::Scope::Kind::MainProgram || ultimateScope.kind() == Fortran::semantics::Scope::Kind::Subprogram) if (ultimateScope != *internalScope && ultimateScope.Contains(*internalScope)) { if (namelistDetails) { // So far, namelist symbols are processed on the fly in IO and // the related namelist data structure is not added to the symbol // map, so it cannot be passed to the internal procedures. // Instead, all the symbols of the host namelist used in the // internal procedure must be considered as host associated so // that IO lowering can find them when needed. for (const auto &namelistObject : namelistDetails->objects()) escapees.insert(&*namelistObject); } else { escapees.insert(&ultimate); } } } }; Fortran::lower::pft::visitAllSymbols(funit, addToListIfEscapee); } //===--------------------------------------------------------------------===// // AbstractConverter overrides //===--------------------------------------------------------------------===// mlir::Value getSymbolAddress(Fortran::lower::SymbolRef sym) override final { return lookupSymbol(sym).getAddr(); } fir::ExtendedValue getSymbolExtendedValue(const Fortran::semantics::Symbol &sym) override final { Fortran::lower::SymbolBox sb = lookupSymbol(sym); assert(sb && "symbol box not found"); return sb.toExtendedValue(); } mlir::Value impliedDoBinding(llvm::StringRef name) override final { mlir::Value val = localSymbols.lookupImpliedDo(name); if (!val) fir::emitFatalError(toLocation(), "ac-do-variable has no binding"); return val; } void copySymbolBinding(Fortran::lower::SymbolRef src, Fortran::lower::SymbolRef target) override final { if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) { auto srcDef = localSymbols.lookupVariableDefinition(src); assert(srcDef && "source binding does not exists"); localSymbols.addVariableDefinition(target, *srcDef); } else { localSymbols.addSymbol(target, lookupSymbol(src).toExtendedValue()); } } /// Add the symbol binding to the inner-most level of the symbol map and /// return true if it is not already present. Otherwise, return false. bool bindIfNewSymbol(Fortran::lower::SymbolRef sym, const fir::ExtendedValue &exval) { if (shallowLookupSymbol(sym)) return false; bindSymbol(sym, exval); return true; } void bindSymbol(Fortran::lower::SymbolRef sym, const fir::ExtendedValue &exval) override final { localSymbols.addSymbol(sym, exval, /*forced=*/true); } bool lookupLabelSet(Fortran::lower::SymbolRef sym, Fortran::lower::pft::LabelSet &labelSet) override final { Fortran::lower::pft::FunctionLikeUnit &owningProc = *getEval().getOwningProcedure(); auto iter = owningProc.assignSymbolLabelMap.find(sym); if (iter == owningProc.assignSymbolLabelMap.end()) return false; labelSet = iter->second; return true; } Fortran::lower::pft::Evaluation * lookupLabel(Fortran::lower::pft::Label label) override final { Fortran::lower::pft::FunctionLikeUnit &owningProc = *getEval().getOwningProcedure(); auto iter = owningProc.labelEvaluationMap.find(label); if (iter == owningProc.labelEvaluationMap.end()) return nullptr; return iter->second; } fir::ExtendedValue translateToExtendedValue(mlir::Location loc, hlfir::EntityWithAttributes entity, Fortran::lower::StatementContext &context) { auto [exv, exvCleanup] = hlfir::translateToExtendedValue(loc, getFirOpBuilder(), entity); if (exvCleanup) context.attachCleanup(*exvCleanup); return exv; } fir::ExtendedValue genExprAddr(const Fortran::lower::SomeExpr &expr, Fortran::lower::StatementContext &context, mlir::Location *locPtr = nullptr) override final { mlir::Location loc = locPtr ? *locPtr : toLocation(); if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) { hlfir::EntityWithAttributes loweredExpr = Fortran::lower::convertExprToHLFIR(loc, *this, expr, localSymbols, context); if (expr.Rank() > 0 && !Fortran::evaluate::IsSimplyContiguous(expr, getFoldingContext())) TODO(loc, "genExprAddr of non contiguous variables in HLFIR"); fir::ExtendedValue exv = translateToExtendedValue(loc, loweredExpr, context); if (fir::isa_trivial(fir::getBase(exv).getType())) TODO(loc, "place trivial in memory"); if (const auto *mutableBox = exv.getBoxOf()) exv = fir::factory::genMutableBoxRead(*builder, loc, *mutableBox); return exv; } return Fortran::lower::createSomeExtendedAddress(loc, *this, expr, localSymbols, context); } fir::ExtendedValue genExprValue(const Fortran::lower::SomeExpr &expr, Fortran::lower::StatementContext &context, mlir::Location *locPtr = nullptr) override final { mlir::Location loc = locPtr ? *locPtr : toLocation(); if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) { hlfir::EntityWithAttributes loweredExpr = Fortran::lower::convertExprToHLFIR(loc, *this, expr, localSymbols, context); fir::ExtendedValue exv = translateToExtendedValue(loc, loweredExpr, context); // Load scalar references to integer, logical, real, or complex value // to an mlir value, dereference allocatable and pointers, and get rid // of fir.box that are no needed or create a copy into contiguous memory. return exv.match( [&](const fir::UnboxedValue &box) -> fir::ExtendedValue { if (mlir::Type elementType = fir::dyn_cast_ptrEleTy(box.getType())) if (fir::isa_trivial(elementType)) return getFirOpBuilder().create(loc, box); return box; }, [&](const fir::CharBoxValue &box) -> fir::ExtendedValue { return box; }, [&](const fir::ArrayBoxValue &box) -> fir::ExtendedValue { return box; }, [&](const fir::CharArrayBoxValue &box) -> fir::ExtendedValue { return box; }, [&](const auto &) -> fir::ExtendedValue { TODO(loc, "lower descriptor designator to HLFIR value"); }); } return Fortran::lower::createSomeExtendedExpression(loc, *this, expr, localSymbols, context); } fir::ExtendedValue genExprBox(mlir::Location loc, const Fortran::lower::SomeExpr &expr, Fortran::lower::StatementContext &stmtCtx) override final { if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) { hlfir::EntityWithAttributes loweredExpr = Fortran::lower::convertExprToHLFIR(loc, *this, expr, localSymbols, stmtCtx); auto exv = translateToExtendedValue(loc, loweredExpr, stmtCtx); if (fir::isa_trivial(fir::getBase(exv).getType())) TODO(loc, "place trivial in memory"); return fir::factory::createBoxValue(getFirOpBuilder(), loc, exv); } return Fortran::lower::createBoxValue(loc, *this, expr, localSymbols, stmtCtx); } Fortran::evaluate::FoldingContext &getFoldingContext() override final { return foldingContext; } mlir::Type genType(const Fortran::lower::SomeExpr &expr) override final { return Fortran::lower::translateSomeExprToFIRType(*this, expr); } mlir::Type genType(const Fortran::lower::pft::Variable &var) override final { return Fortran::lower::translateVariableToFIRType(*this, var); } mlir::Type genType(Fortran::lower::SymbolRef sym) override final { return Fortran::lower::translateSymbolToFIRType(*this, sym); } mlir::Type genType(Fortran::common::TypeCategory tc, int kind, llvm::ArrayRef lenParameters) override final { return Fortran::lower::getFIRType(&getMLIRContext(), tc, kind, lenParameters); } mlir::Type genType(const Fortran::semantics::DerivedTypeSpec &tySpec) override final { return Fortran::lower::translateDerivedTypeToFIRType(*this, tySpec); } mlir::Type genType(Fortran::common::TypeCategory tc) override final { return Fortran::lower::getFIRType( &getMLIRContext(), tc, bridge.getDefaultKinds().GetDefaultKind(tc), std::nullopt); } bool createHostAssociateVarClone( const Fortran::semantics::Symbol &sym) override final { mlir::Location loc = genLocation(sym.name()); mlir::Type symType = genType(sym); const auto *details = sym.detailsIf(); assert(details && "No host-association found"); const Fortran::semantics::Symbol &hsym = details->symbol(); Fortran::lower::SymbolBox hsb = lookupSymbol(hsym); auto allocate = [&](llvm::ArrayRef shape, llvm::ArrayRef typeParams) -> mlir::Value { mlir::Value allocVal = builder->allocateLocal( loc, symType, mangleName(sym), toStringRef(sym.GetUltimate().name()), /*pinned=*/true, shape, typeParams, sym.GetUltimate().attrs().test(Fortran::semantics::Attr::TARGET)); return allocVal; }; fir::ExtendedValue hexv = getExtendedValue(hsb); fir::ExtendedValue exv = hexv.match( [&](const fir::BoxValue &box) -> fir::ExtendedValue { const Fortran::semantics::DeclTypeSpec *type = sym.GetType(); if (type && type->IsPolymorphic()) TODO(loc, "create polymorphic host associated copy"); // Create a contiguous temp with the same shape and length as // the original variable described by a fir.box. llvm::SmallVector extents = fir::factory::getExtents(loc, *builder, hexv); if (box.isDerivedWithLenParameters()) TODO(loc, "get length parameters from derived type BoxValue"); if (box.isCharacter()) { mlir::Value len = fir::factory::readCharLen(*builder, loc, box); mlir::Value temp = allocate(extents, {len}); return fir::CharArrayBoxValue{temp, len, extents}; } return fir::ArrayBoxValue{allocate(extents, {}), extents}; }, [&](const fir::MutableBoxValue &box) -> fir::ExtendedValue { // Allocate storage for a pointer/allocatble descriptor. // No shape/lengths to be passed to the alloca. return fir::MutableBoxValue(allocate({}, {}), box.nonDeferredLenParams(), {}); }, [&](const auto &) -> fir::ExtendedValue { mlir::Value temp = allocate(fir::factory::getExtents(loc, *builder, hexv), fir::factory::getTypeParams(loc, *builder, hexv)); return fir::substBase(hexv, temp); }); // Replace all uses of the original with the clone/copy, // esepcially for loop bounds (that uses the variable being privatised) // since loop bounds use old values that need to be fixed by using the // new copied value. // Not able to use replaceAllUsesWith() because uses outside // the loop body should not use the clone. // FIXME: Call privatization before the loop operation. mlir::Region &curRegion = getFirOpBuilder().getRegion(); mlir::Value oldVal = fir::getBase(hexv); mlir::Value cloneVal = fir::getBase(exv); for (auto &oper : curRegion.getOps()) { for (unsigned int ii = 0; ii < oper.getNumOperands(); ++ii) { if (oper.getOperand(ii) == oldVal) { oper.setOperand(ii, cloneVal); } } } return bindIfNewSymbol(sym, exv); } void copyHostAssociateVar( const Fortran::semantics::Symbol &sym, mlir::OpBuilder::InsertPoint *copyAssignIP = nullptr) override final { // 1) Fetch the original copy of the variable. assert(sym.has() && "No host-association found"); const Fortran::semantics::Symbol &hsym = sym.GetUltimate(); Fortran::lower::SymbolBox hsb = lookupOneLevelUpSymbol(hsym); assert(hsb && "Host symbol box not found"); fir::ExtendedValue hexv = getExtendedValue(hsb); // 2) Fetch the copied one that will mask the original. Fortran::lower::SymbolBox sb = shallowLookupSymbol(sym); assert(sb && "Host-associated symbol box not found"); assert(hsb.getAddr() != sb.getAddr() && "Host and associated symbol boxes are the same"); fir::ExtendedValue exv = getExtendedValue(sb); // 3) Perform the assignment. mlir::OpBuilder::InsertPoint insPt = builder->saveInsertionPoint(); if (copyAssignIP && copyAssignIP->isSet()) builder->restoreInsertionPoint(*copyAssignIP); else builder->setInsertionPointAfter(fir::getBase(exv).getDefiningOp()); fir::ExtendedValue lhs, rhs; if (copyAssignIP && copyAssignIP->isSet() && sym.test(Fortran::semantics::Symbol::Flag::OmpLastPrivate)) { // lastprivate case lhs = hexv; rhs = exv; } else { lhs = exv; rhs = hexv; } mlir::Location loc = genLocation(sym.name()); mlir::Type symType = genType(sym); if (auto seqTy = symType.dyn_cast()) { Fortran::lower::StatementContext stmtCtx; Fortran::lower::createSomeArrayAssignment(*this, lhs, rhs, localSymbols, stmtCtx); stmtCtx.finalize(); } else if (hexv.getBoxOf()) { fir::factory::CharacterExprHelper{*builder, loc}.createAssign(lhs, rhs); } else if (hexv.getBoxOf()) { TODO(loc, "firstprivatisation of allocatable variables"); } else { auto loadVal = builder->create(loc, fir::getBase(rhs)); builder->create(loc, loadVal, fir::getBase(lhs)); } if (copyAssignIP && copyAssignIP->isSet() && sym.test(Fortran::semantics::Symbol::Flag::OmpLastPrivate)) builder->restoreInsertionPoint(insPt); } //===--------------------------------------------------------------------===// // Utility methods //===--------------------------------------------------------------------===// void collectSymbolSet( Fortran::lower::pft::Evaluation &eval, llvm::SetVector &symbolSet, Fortran::semantics::Symbol::Flag flag, bool collectSymbols, bool checkHostAssociatedSymbols) override final { auto addToList = [&](const Fortran::semantics::Symbol &sym) { std::function insertSymbols = [&](const Fortran::semantics::Symbol &oriSymbol, bool collectSymbol) { if (collectSymbol && oriSymbol.test(flag)) symbolSet.insert(&oriSymbol); if (checkHostAssociatedSymbols) if (const auto *details{ oriSymbol .detailsIf()}) insertSymbols(details->symbol(), true); }; insertSymbols(sym, collectSymbols); }; Fortran::lower::pft::visitAllSymbols(eval, addToList); } mlir::Location getCurrentLocation() override final { return toLocation(); } /// Generate a dummy location. mlir::Location genUnknownLocation() override final { // Note: builder may not be instantiated yet return mlir::UnknownLoc::get(&getMLIRContext()); } /// Generate a `Location` from the `CharBlock`. mlir::Location genLocation(const Fortran::parser::CharBlock &block) override final { if (const Fortran::parser::AllCookedSources *cooked = bridge.getCookedSource()) { if (std::optional> loc = cooked->GetSourcePositionRange(block)) { // loc is a pair (begin, end); use the beginning position Fortran::parser::SourcePosition &filePos = loc->first; return mlir::FileLineColLoc::get(&getMLIRContext(), filePos.file.path(), filePos.line, filePos.column); } } return genUnknownLocation(); } fir::FirOpBuilder &getFirOpBuilder() override final { return *builder; } mlir::ModuleOp &getModuleOp() override final { return bridge.getModule(); } mlir::MLIRContext &getMLIRContext() override final { return bridge.getMLIRContext(); } std::string mangleName(const Fortran::semantics::Symbol &symbol) override final { return Fortran::lower::mangle::mangleName(symbol); } const fir::KindMapping &getKindMap() override final { return bridge.getKindMap(); } mlir::Value hostAssocTupleValue() override final { return hostAssocTuple; } /// Record a binding for the ssa-value of the tuple for this function. void bindHostAssocTuple(mlir::Value val) override final { assert(!hostAssocTuple && val); hostAssocTuple = val; } void registerRuntimeTypeInfo( mlir::Location loc, Fortran::lower::SymbolRef typeInfoSym) override final { runtimeTypeInfoConverter.registerTypeInfoSymbol(*this, loc, typeInfoSym); } void registerDispatchTableInfo( mlir::Location loc, const Fortran::semantics::DerivedTypeSpec *typeSpec) override final { dispatchTableConverter.registerTypeSpec(loc, typeSpec); } private: FirConverter() = delete; FirConverter(const FirConverter &) = delete; FirConverter &operator=(const FirConverter &) = delete; //===--------------------------------------------------------------------===// // Helper member functions //===--------------------------------------------------------------------===// mlir::Value createFIRExpr(mlir::Location loc, const Fortran::lower::SomeExpr *expr, Fortran::lower::StatementContext &stmtCtx) { return fir::getBase(genExprValue(*expr, stmtCtx, &loc)); } /// Find the symbol in the local map or return null. Fortran::lower::SymbolBox lookupSymbol(const Fortran::semantics::Symbol &sym) { if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) { if (std::optional var = localSymbols.lookupVariableDefinition(sym)) { auto exv = hlfir::translateToExtendedValue(toLocation(), *builder, *var); return exv.match( [](mlir::Value x) -> Fortran::lower::SymbolBox { return Fortran::lower::SymbolBox::Intrinsic{x}; }, [](auto x) -> Fortran::lower::SymbolBox { return x; }); } return {}; } if (Fortran::lower::SymbolBox v = localSymbols.lookupSymbol(sym)) return v; return {}; } /// Find the symbol in the inner-most level of the local map or return null. Fortran::lower::SymbolBox shallowLookupSymbol(const Fortran::semantics::Symbol &sym) { if (Fortran::lower::SymbolBox v = localSymbols.shallowLookupSymbol(sym)) return v; return {}; } /// Find the symbol in one level up of symbol map such as for host-association /// in OpenMP code or return null. Fortran::lower::SymbolBox lookupOneLevelUpSymbol(const Fortran::semantics::Symbol &sym) { if (Fortran::lower::SymbolBox v = localSymbols.lookupOneLevelUpSymbol(sym)) return v; return {}; } /// Add the symbol to the local map and return `true`. If the symbol is /// already in the map and \p forced is `false`, the map is not updated. /// Instead the value `false` is returned. bool addSymbol(const Fortran::semantics::SymbolRef sym, mlir::Value val, bool forced = false) { if (!forced && lookupSymbol(sym)) return false; localSymbols.addSymbol(sym, val, forced); return true; } bool addCharSymbol(const Fortran::semantics::SymbolRef sym, mlir::Value val, mlir::Value len, bool forced = false) { if (!forced && lookupSymbol(sym)) return false; // TODO: ensure val type is fir.array> like. Insert // cast if needed. localSymbols.addCharSymbol(sym, val, len, forced); return true; } fir::ExtendedValue getExtendedValue(Fortran::lower::SymbolBox sb) { return sb.match( [&](const Fortran::lower::SymbolBox::PointerOrAllocatable &box) { return fir::factory::genMutableBoxRead(*builder, getCurrentLocation(), box); }, [&sb](auto &) { return sb.toExtendedValue(); }); } /// Generate the address of loop variable \p sym. /// If \p sym is not mapped yet, allocate local storage for it. mlir::Value genLoopVariableAddress(mlir::Location loc, const Fortran::semantics::Symbol &sym, bool isUnordered) { if (isUnordered || sym.has() || sym.has()) { if (!shallowLookupSymbol(sym)) { // Do concurrent loop variables are not mapped yet since they are local // to the Do concurrent scope (same for OpenMP loops). auto newVal = builder->createTemporary(loc, genType(sym), toStringRef(sym.name())); bindIfNewSymbol(sym, newVal); return newVal; } } auto entry = lookupSymbol(sym); (void)entry; assert(entry && "loop control variable must already be in map"); Fortran::lower::StatementContext stmtCtx; return fir::getBase( genExprAddr(Fortran::evaluate::AsGenericExpr(sym).value(), stmtCtx)); } static bool isNumericScalarCategory(Fortran::common::TypeCategory cat) { return cat == Fortran::common::TypeCategory::Integer || cat == Fortran::common::TypeCategory::Real || cat == Fortran::common::TypeCategory::Complex || cat == Fortran::common::TypeCategory::Logical; } static bool isLogicalCategory(Fortran::common::TypeCategory cat) { return cat == Fortran::common::TypeCategory::Logical; } static bool isCharacterCategory(Fortran::common::TypeCategory cat) { return cat == Fortran::common::TypeCategory::Character; } static bool isDerivedCategory(Fortran::common::TypeCategory cat) { return cat == Fortran::common::TypeCategory::Derived; } /// Insert a new block before \p block. Leave the insertion point unchanged. mlir::Block *insertBlock(mlir::Block *block) { mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint(); mlir::Block *newBlock = builder->createBlock(block); builder->restoreInsertionPoint(insertPt); return newBlock; } mlir::Block *blockOfLabel(Fortran::lower::pft::Evaluation &eval, Fortran::parser::Label label) { const Fortran::lower::pft::LabelEvalMap &labelEvaluationMap = eval.getOwningProcedure()->labelEvaluationMap; const auto iter = labelEvaluationMap.find(label); assert(iter != labelEvaluationMap.end() && "label missing from map"); mlir::Block *block = iter->second->block; assert(block && "missing labeled evaluation block"); return block; } void genFIRBranch(mlir::Block *targetBlock) { assert(targetBlock && "missing unconditional target block"); builder->create(toLocation(), targetBlock); } void genFIRConditionalBranch(mlir::Value cond, mlir::Block *trueTarget, mlir::Block *falseTarget) { assert(trueTarget && "missing conditional branch true block"); assert(falseTarget && "missing conditional branch false block"); mlir::Location loc = toLocation(); mlir::Value bcc = builder->createConvert(loc, builder->getI1Type(), cond); builder->create(loc, bcc, trueTarget, std::nullopt, falseTarget, std::nullopt); } void genFIRConditionalBranch(mlir::Value cond, Fortran::lower::pft::Evaluation *trueTarget, Fortran::lower::pft::Evaluation *falseTarget) { genFIRConditionalBranch(cond, trueTarget->block, falseTarget->block); } void genFIRConditionalBranch(const Fortran::parser::ScalarLogicalExpr &expr, mlir::Block *trueTarget, mlir::Block *falseTarget) { Fortran::lower::StatementContext stmtCtx; mlir::Value cond = createFIRExpr(toLocation(), Fortran::semantics::GetExpr(expr), stmtCtx); stmtCtx.finalize(); genFIRConditionalBranch(cond, trueTarget, falseTarget); } void genFIRConditionalBranch(const Fortran::parser::ScalarLogicalExpr &expr, Fortran::lower::pft::Evaluation *trueTarget, Fortran::lower::pft::Evaluation *falseTarget) { Fortran::lower::StatementContext stmtCtx; mlir::Value cond = createFIRExpr(toLocation(), Fortran::semantics::GetExpr(expr), stmtCtx); stmtCtx.finalize(); genFIRConditionalBranch(cond, trueTarget->block, falseTarget->block); } //===--------------------------------------------------------------------===// // Termination of symbolically referenced execution units //===--------------------------------------------------------------------===// /// END of program /// /// Generate the cleanup block before the program exits void genExitRoutine() { if (blockIsUnterminated()) builder->create(toLocation()); } void genFIR(const Fortran::parser::EndProgramStmt &) { genExitRoutine(); } /// END of procedure-like constructs /// /// Generate the cleanup block before the procedure exits void genReturnSymbol(const Fortran::semantics::Symbol &functionSymbol) { const Fortran::semantics::Symbol &resultSym = functionSymbol.get().result(); Fortran::lower::SymbolBox resultSymBox = lookupSymbol(resultSym); mlir::Location loc = toLocation(); if (!resultSymBox) { mlir::emitError(loc, "internal error when processing function return"); return; } mlir::Value resultVal = resultSymBox.match( [&](const fir::CharBoxValue &x) -> mlir::Value { if (Fortran::semantics::IsBindCProcedure(functionSymbol)) return builder->create(loc, x.getBuffer()); return fir::factory::CharacterExprHelper{*builder, loc} .createEmboxChar(x.getBuffer(), x.getLen()); }, [&](const auto &) -> mlir::Value { mlir::Value resultRef = resultSymBox.getAddr(); mlir::Type resultType = genType(resultSym); mlir::Type resultRefType = builder->getRefType(resultType); // A function with multiple entry points returning different types // tags all result variables with one of the largest types to allow // them to share the same storage. Convert this to the actual type. if (resultRef.getType() != resultRefType) resultRef = builder->createConvert(loc, resultRefType, resultRef); return builder->create(loc, resultRef); }); builder->create(loc, resultVal); } /// Get the return value of a call to \p symbol, which is a subroutine entry /// point that has alternative return specifiers. const mlir::Value getAltReturnResult(const Fortran::semantics::Symbol &symbol) { assert(Fortran::semantics::HasAlternateReturns(symbol) && "subroutine does not have alternate returns"); return getSymbolAddress(symbol); } void genFIRProcedureExit(Fortran::lower::pft::FunctionLikeUnit &funit, const Fortran::semantics::Symbol &symbol) { if (mlir::Block *finalBlock = funit.finalBlock) { // The current block must end with a terminator. if (blockIsUnterminated()) builder->create(toLocation(), finalBlock); // Set insertion point to final block. builder->setInsertionPoint(finalBlock, finalBlock->end()); } if (Fortran::semantics::IsFunction(symbol)) { genReturnSymbol(symbol); } else if (Fortran::semantics::HasAlternateReturns(symbol)) { mlir::Value retval = builder->create( toLocation(), getAltReturnResult(symbol)); builder->create(toLocation(), retval); } else { genExitRoutine(); } } // // Statements that have control-flow semantics // /// Generate an If[Then]Stmt condition or its negation. template mlir::Value genIfCondition(const A *stmt, bool negate = false) { mlir::Location loc = toLocation(); Fortran::lower::StatementContext stmtCtx; mlir::Value condExpr = createFIRExpr( loc, Fortran::semantics::GetExpr( std::get(stmt->t)), stmtCtx); stmtCtx.finalize(); mlir::Value cond = builder->createConvert(loc, builder->getI1Type(), condExpr); if (negate) cond = builder->create( loc, cond, builder->createIntegerConstant(loc, cond.getType(), 1)); return cond; } mlir::func::FuncOp getFunc(llvm::StringRef name, mlir::FunctionType ty) { if (mlir::func::FuncOp func = builder->getNamedFunction(name)) { assert(func.getFunctionType() == ty); return func; } return builder->createFunction(toLocation(), name, ty); } /// Lowering of CALL statement void genFIR(const Fortran::parser::CallStmt &stmt) { Fortran::lower::StatementContext stmtCtx; Fortran::lower::pft::Evaluation &eval = getEval(); setCurrentPosition(stmt.v.source); assert(stmt.typedCall && "Call was not analyzed"); mlir::Value res{}; if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) { std::optional resultType = std::nullopt; if (stmt.typedCall->hasAlternateReturns()) resultType = builder->getIndexType(); auto hlfirRes = Fortran::lower::convertCallToHLFIR( toLocation(), *this, *stmt.typedCall, resultType, localSymbols, stmtCtx); if (hlfirRes) res = *hlfirRes; } else { // Call statement lowering shares code with function call lowering. res = Fortran::lower::createSubroutineCall( *this, *stmt.typedCall, explicitIterSpace, implicitIterSpace, localSymbols, stmtCtx, /*isUserDefAssignment=*/false); } if (!res) return; // "Normal" subroutine call. // Call with alternate return specifiers. // The call returns an index that selects an alternate return branch target. llvm::SmallVector indexList; llvm::SmallVector blockList; int64_t index = 0; for (const Fortran::parser::ActualArgSpec &arg : std::get>(stmt.v.t)) { const auto &actual = std::get(arg.t); if (const auto *altReturn = std::get_if(&actual.u)) { indexList.push_back(++index); blockList.push_back(blockOfLabel(eval, altReturn->v)); } } blockList.push_back(eval.nonNopSuccessor().block); // default = fallthrough stmtCtx.finalize(); builder->create(toLocation(), res, indexList, blockList); } void genFIR(const Fortran::parser::ComputedGotoStmt &stmt) { Fortran::lower::StatementContext stmtCtx; Fortran::lower::pft::Evaluation &eval = getEval(); mlir::Value selectExpr = createFIRExpr(toLocation(), Fortran::semantics::GetExpr( std::get(stmt.t)), stmtCtx); stmtCtx.finalize(); llvm::SmallVector indexList; llvm::SmallVector blockList; int64_t index = 0; for (Fortran::parser::Label label : std::get>(stmt.t)) { indexList.push_back(++index); blockList.push_back(blockOfLabel(eval, label)); } blockList.push_back(eval.nonNopSuccessor().block); // default builder->create(toLocation(), selectExpr, indexList, blockList); } void genFIR(const Fortran::parser::ArithmeticIfStmt &stmt) { Fortran::lower::StatementContext stmtCtx; Fortran::lower::pft::Evaluation &eval = getEval(); mlir::Value expr = createFIRExpr( toLocation(), Fortran::semantics::GetExpr(std::get(stmt.t)), stmtCtx); stmtCtx.finalize(); mlir::Type exprType = expr.getType(); mlir::Location loc = toLocation(); if (exprType.isSignlessInteger()) { // Arithmetic expression has Integer type. Generate a SelectCaseOp // with ranges {(-inf:-1], 0=default, [1:inf)}. mlir::MLIRContext *context = builder->getContext(); llvm::SmallVector attrList; llvm::SmallVector valueList; llvm::SmallVector blockList; attrList.push_back(fir::UpperBoundAttr::get(context)); valueList.push_back(builder->createIntegerConstant(loc, exprType, -1)); blockList.push_back(blockOfLabel(eval, std::get<1>(stmt.t))); attrList.push_back(fir::LowerBoundAttr::get(context)); valueList.push_back(builder->createIntegerConstant(loc, exprType, 1)); blockList.push_back(blockOfLabel(eval, std::get<3>(stmt.t))); attrList.push_back(mlir::UnitAttr::get(context)); // 0 is the "default" blockList.push_back(blockOfLabel(eval, std::get<2>(stmt.t))); builder->create(loc, expr, attrList, valueList, blockList); return; } // Arithmetic expression has Real type. Generate // sum = expr + expr [ raise an exception if expr is a NaN ] // if (sum < 0.0) goto L1 else if (sum > 0.0) goto L3 else goto L2 auto sum = builder->create(loc, expr, expr); auto zero = builder->create( loc, exprType, builder->getFloatAttr(exprType, 0.0)); auto cond1 = builder->create( loc, mlir::arith::CmpFPredicate::OLT, sum, zero); mlir::Block *elseIfBlock = builder->getBlock()->splitBlock(builder->getInsertionPoint()); genFIRConditionalBranch(cond1, blockOfLabel(eval, std::get<1>(stmt.t)), elseIfBlock); startBlock(elseIfBlock); auto cond2 = builder->create( loc, mlir::arith::CmpFPredicate::OGT, sum, zero); genFIRConditionalBranch(cond2, blockOfLabel(eval, std::get<3>(stmt.t)), blockOfLabel(eval, std::get<2>(stmt.t))); } void genFIR(const Fortran::parser::AssignedGotoStmt &stmt) { // Program requirement 1990 8.2.4 - // // At the time of execution of an assigned GOTO statement, the integer // variable must be defined with the value of a statement label of a // branch target statement that appears in the same scoping unit. // Note that the variable may be defined with a statement label value // only by an ASSIGN statement in the same scoping unit as the assigned // GOTO statement. mlir::Location loc = toLocation(); Fortran::lower::pft::Evaluation &eval = getEval(); const Fortran::lower::pft::SymbolLabelMap &symbolLabelMap = eval.getOwningProcedure()->assignSymbolLabelMap; const Fortran::semantics::Symbol &symbol = *std::get(stmt.t).symbol; auto selectExpr = builder->create(loc, getSymbolAddress(symbol)); auto iter = symbolLabelMap.find(symbol); if (iter == symbolLabelMap.end()) { // Fail for a nonconforming program unit that does not have any ASSIGN // statements. The front end should check for this. mlir::emitError(loc, "(semantics issue) no assigned goto targets"); exit(1); } auto labelSet = iter->second; llvm::SmallVector indexList; llvm::SmallVector blockList; auto addLabel = [&](Fortran::parser::Label label) { indexList.push_back(label); blockList.push_back(blockOfLabel(eval, label)); }; // Add labels from an explicit list. The list may have duplicates. for (Fortran::parser::Label label : std::get>(stmt.t)) { if (labelSet.count(label) && !llvm::is_contained(indexList, label)) { // ignore duplicates addLabel(label); } } // Absent an explicit list, add all possible label targets. if (indexList.empty()) for (auto &label : labelSet) addLabel(label); // Add a nop/fallthrough branch to the switch for a nonconforming program // unit that violates the program requirement above. blockList.push_back(eval.nonNopSuccessor().block); // default builder->create(loc, selectExpr, indexList, blockList); } /// Collect DO CONCURRENT or FORALL loop control information. IncrementLoopNestInfo getConcurrentControl( const Fortran::parser::ConcurrentHeader &header, const std::list &localityList = {}) { IncrementLoopNestInfo incrementLoopNestInfo; for (const Fortran::parser::ConcurrentControl &control : std::get>(header.t)) incrementLoopNestInfo.emplace_back( *std::get<0>(control.t).symbol, std::get<1>(control.t), std::get<2>(control.t), std::get<3>(control.t), /*isUnordered=*/true); IncrementLoopInfo &info = incrementLoopNestInfo.back(); info.maskExpr = Fortran::semantics::GetExpr( std::get>(header.t)); for (const Fortran::parser::LocalitySpec &x : localityList) { if (const auto *localInitList = std::get_if(&x.u)) for (const Fortran::parser::Name &x : localInitList->v) info.localInitSymList.push_back(x.symbol); if (const auto *sharedList = std::get_if(&x.u)) for (const Fortran::parser::Name &x : sharedList->v) info.sharedSymList.push_back(x.symbol); if (std::get_if(&x.u)) TODO(toLocation(), "do concurrent locality specs not implemented"); } return incrementLoopNestInfo; } /// Generate FIR for a DO construct. There are six variants: /// - unstructured infinite and while loops /// - structured and unstructured increment loops /// - structured and unstructured concurrent loops void genFIR(const Fortran::parser::DoConstruct &doConstruct) { setCurrentPositionAt(doConstruct); // Collect loop nest information. // Generate begin loop code directly for infinite and while loops. Fortran::lower::pft::Evaluation &eval = getEval(); bool unstructuredContext = eval.lowerAsUnstructured(); Fortran::lower::pft::Evaluation &doStmtEval = eval.getFirstNestedEvaluation(); auto *doStmt = doStmtEval.getIf(); const auto &loopControl = std::get>(doStmt->t); mlir::Block *preheaderBlock = doStmtEval.block; mlir::Block *beginBlock = preheaderBlock ? preheaderBlock : builder->getBlock(); auto createNextBeginBlock = [&]() { // Step beginBlock through unstructured preheader, header, and mask // blocks, created in outermost to innermost order. return beginBlock = beginBlock->splitBlock(beginBlock->end()); }; mlir::Block *headerBlock = unstructuredContext ? createNextBeginBlock() : nullptr; mlir::Block *bodyBlock = doStmtEval.lexicalSuccessor->block; mlir::Block *exitBlock = doStmtEval.parentConstruct->constructExit->block; IncrementLoopNestInfo incrementLoopNestInfo; const Fortran::parser::ScalarLogicalExpr *whileCondition = nullptr; bool infiniteLoop = !loopControl.has_value(); if (infiniteLoop) { assert(unstructuredContext && "infinite loop must be unstructured"); startBlock(headerBlock); } else if ((whileCondition = std::get_if( &loopControl->u))) { assert(unstructuredContext && "while loop must be unstructured"); maybeStartBlock(preheaderBlock); // no block or empty block startBlock(headerBlock); genFIRConditionalBranch(*whileCondition, bodyBlock, exitBlock); } else if (const auto *bounds = std::get_if( &loopControl->u)) { // Non-concurrent increment loop. IncrementLoopInfo &info = incrementLoopNestInfo.emplace_back( *bounds->name.thing.symbol, bounds->lower, bounds->upper, bounds->step); if (unstructuredContext) { maybeStartBlock(preheaderBlock); info.hasRealControl = info.loopVariableSym.GetType()->IsNumeric( Fortran::common::TypeCategory::Real); info.headerBlock = headerBlock; info.bodyBlock = bodyBlock; info.exitBlock = exitBlock; } } else { const auto *concurrent = std::get_if( &loopControl->u); assert(concurrent && "invalid DO loop variant"); incrementLoopNestInfo = getConcurrentControl( std::get(concurrent->t), std::get>(concurrent->t)); if (unstructuredContext) { maybeStartBlock(preheaderBlock); for (IncrementLoopInfo &info : incrementLoopNestInfo) { // The original loop body provides the body and latch blocks of the // innermost dimension. The (first) body block of a non-innermost // dimension is the preheader block of the immediately enclosed // dimension. The latch block of a non-innermost dimension is the // exit block of the immediately enclosed dimension. auto createNextExitBlock = [&]() { // Create unstructured loop exit blocks, outermost to innermost. return exitBlock = insertBlock(exitBlock); }; bool isInnermost = &info == &incrementLoopNestInfo.back(); bool isOutermost = &info == &incrementLoopNestInfo.front(); info.headerBlock = isOutermost ? headerBlock : createNextBeginBlock(); info.bodyBlock = isInnermost ? bodyBlock : createNextBeginBlock(); info.exitBlock = isOutermost ? exitBlock : createNextExitBlock(); if (info.maskExpr) info.maskBlock = createNextBeginBlock(); } } } // Increment loop begin code. (Infinite/while code was already generated.) if (!infiniteLoop && !whileCondition) genFIRIncrementLoopBegin(incrementLoopNestInfo); // Loop body code. auto iter = eval.getNestedEvaluations().begin(); for (auto end = --eval.getNestedEvaluations().end(); iter != end; ++iter) genFIR(*iter, unstructuredContext); // An EndDoStmt in unstructured code may start a new block. Fortran::lower::pft::Evaluation &endDoEval = *iter; assert(endDoEval.getIf() && "no enddo stmt"); if (unstructuredContext) maybeStartBlock(endDoEval.block); // Loop end code. if (infiniteLoop || whileCondition) genFIRBranch(headerBlock); else genFIRIncrementLoopEnd(incrementLoopNestInfo); // This call may generate a branch in some contexts. genFIR(endDoEval, unstructuredContext); } /// Generate FIR to begin a structured or unstructured increment loop nest. void genFIRIncrementLoopBegin(IncrementLoopNestInfo &incrementLoopNestInfo) { assert(!incrementLoopNestInfo.empty() && "empty loop nest"); mlir::Location loc = toLocation(); auto genControlValue = [&](const Fortran::lower::SomeExpr *expr, const IncrementLoopInfo &info) { mlir::Type controlType = info.isStructured() ? builder->getIndexType() : info.getLoopVariableType(); Fortran::lower::StatementContext stmtCtx; if (expr) return builder->createConvert(loc, controlType, createFIRExpr(loc, expr, stmtCtx)); if (info.hasRealControl) return builder->createRealConstant(loc, controlType, 1u); return builder->createIntegerConstant(loc, controlType, 1); // step }; auto handleLocalitySpec = [&](IncrementLoopInfo &info) { // Generate Local Init Assignments for (const Fortran::semantics::Symbol *sym : info.localInitSymList) { const auto *hostDetails = sym->detailsIf(); assert(hostDetails && "missing local_init variable host variable"); const Fortran::semantics::Symbol &hostSym = hostDetails->symbol(); (void)hostSym; TODO(loc, "do concurrent locality specs not implemented"); } // Handle shared locality spec for (const Fortran::semantics::Symbol *sym : info.sharedSymList) { const auto *hostDetails = sym->detailsIf(); assert(hostDetails && "missing shared variable host variable"); const Fortran::semantics::Symbol &hostSym = hostDetails->symbol(); copySymbolBinding(hostSym, *sym); } }; for (IncrementLoopInfo &info : incrementLoopNestInfo) { info.loopVariable = genLoopVariableAddress(loc, info.loopVariableSym, info.isUnordered); mlir::Value lowerValue = genControlValue(info.lowerExpr, info); mlir::Value upperValue = genControlValue(info.upperExpr, info); info.stepValue = genControlValue(info.stepExpr, info); // Structured loop - generate fir.do_loop. if (info.isStructured()) { mlir::Type loopVarType = info.getLoopVariableType(); mlir::Value loopValue; if (info.isUnordered) { // The loop variable value is explicitly updated. info.doLoop = builder->create( loc, lowerValue, upperValue, info.stepValue, /*unordered=*/true); builder->setInsertionPointToStart(info.doLoop.getBody()); loopValue = builder->createConvert(loc, loopVarType, info.doLoop.getInductionVar()); } else { // The loop variable is a doLoop op argument. info.doLoop = builder->create( loc, lowerValue, upperValue, info.stepValue, /*unordered=*/false, /*finalCountValue=*/true, builder->createConvert(loc, loopVarType, lowerValue)); builder->setInsertionPointToStart(info.doLoop.getBody()); loopValue = info.doLoop.getRegionIterArgs()[0]; } // Update the loop variable value in case it has non-index references. builder->create(loc, loopValue, info.loopVariable); if (info.maskExpr) { Fortran::lower::StatementContext stmtCtx; mlir::Value maskCond = createFIRExpr(loc, info.maskExpr, stmtCtx); stmtCtx.finalize(); mlir::Value maskCondCast = builder->createConvert(loc, builder->getI1Type(), maskCond); auto ifOp = builder->create(loc, maskCondCast, /*withElseRegion=*/false); builder->setInsertionPointToStart(&ifOp.getThenRegion().front()); } handleLocalitySpec(info); continue; } // Unstructured loop preheader - initialize tripVariable and loopVariable. mlir::Value tripCount; if (info.hasRealControl) { auto diff1 = builder->create(loc, upperValue, lowerValue); auto diff2 = builder->create(loc, diff1, info.stepValue); tripCount = builder->create(loc, diff2, info.stepValue); tripCount = builder->createConvert(loc, builder->getIndexType(), tripCount); } else { auto diff1 = builder->create(loc, upperValue, lowerValue); auto diff2 = builder->create(loc, diff1, info.stepValue); tripCount = builder->create(loc, diff2, info.stepValue); } if (forceLoopToExecuteOnce) { // minimum tripCount is 1 mlir::Value one = builder->createIntegerConstant(loc, tripCount.getType(), 1); auto cond = builder->create( loc, mlir::arith::CmpIPredicate::slt, tripCount, one); tripCount = builder->create(loc, cond, one, tripCount); } info.tripVariable = builder->createTemporary(loc, tripCount.getType()); builder->create(loc, tripCount, info.tripVariable); builder->create(loc, lowerValue, info.loopVariable); // Unstructured loop header - generate loop condition and mask. // Note - Currently there is no way to tag a loop as a concurrent loop. startBlock(info.headerBlock); tripCount = builder->create(loc, info.tripVariable); mlir::Value zero = builder->createIntegerConstant(loc, tripCount.getType(), 0); auto cond = builder->create( loc, mlir::arith::CmpIPredicate::sgt, tripCount, zero); if (info.maskExpr) { genFIRConditionalBranch(cond, info.maskBlock, info.exitBlock); startBlock(info.maskBlock); mlir::Block *latchBlock = getEval().getLastNestedEvaluation().block; assert(latchBlock && "missing masked concurrent loop latch block"); Fortran::lower::StatementContext stmtCtx; mlir::Value maskCond = createFIRExpr(loc, info.maskExpr, stmtCtx); stmtCtx.finalize(); genFIRConditionalBranch(maskCond, info.bodyBlock, latchBlock); } else { genFIRConditionalBranch(cond, info.bodyBlock, info.exitBlock); if (&info != &incrementLoopNestInfo.back()) // not innermost startBlock(info.bodyBlock); // preheader block of enclosed dimension } if (!info.localInitSymList.empty()) { mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint(); builder->setInsertionPointToStart(info.bodyBlock); handleLocalitySpec(info); builder->restoreInsertionPoint(insertPt); } } } /// Generate FIR to end a structured or unstructured increment loop nest. void genFIRIncrementLoopEnd(IncrementLoopNestInfo &incrementLoopNestInfo) { assert(!incrementLoopNestInfo.empty() && "empty loop nest"); mlir::Location loc = toLocation(); for (auto it = incrementLoopNestInfo.rbegin(), rend = incrementLoopNestInfo.rend(); it != rend; ++it) { IncrementLoopInfo &info = *it; if (info.isStructured()) { // End fir.do_loop. if (info.isUnordered) { builder->setInsertionPointAfter(info.doLoop); continue; } // Decrement tripVariable. builder->setInsertionPointToEnd(info.doLoop.getBody()); llvm::SmallVector results; results.push_back(builder->create( loc, info.doLoop.getInductionVar(), info.doLoop.getStep())); // Step loopVariable to help optimizations such as vectorization. // Induction variable elimination will clean up as necessary. mlir::Value step = builder->createConvert( loc, info.getLoopVariableType(), info.doLoop.getStep()); mlir::Value loopVar = builder->create(loc, info.loopVariable); results.push_back( builder->create(loc, loopVar, step)); builder->create(loc, results); builder->setInsertionPointAfter(info.doLoop); // The loop control variable may be used after the loop. builder->create(loc, info.doLoop.getResult(1), info.loopVariable); continue; } // Unstructured loop - decrement tripVariable and step loopVariable. mlir::Value tripCount = builder->create(loc, info.tripVariable); mlir::Value one = builder->createIntegerConstant(loc, tripCount.getType(), 1); tripCount = builder->create(loc, tripCount, one); builder->create(loc, tripCount, info.tripVariable); mlir::Value value = builder->create(loc, info.loopVariable); if (info.hasRealControl) value = builder->create(loc, value, info.stepValue); else value = builder->create(loc, value, info.stepValue); builder->create(loc, value, info.loopVariable); genFIRBranch(info.headerBlock); if (&info != &incrementLoopNestInfo.front()) // not outermost startBlock(info.exitBlock); // latch block of enclosing dimension } } /// Generate structured or unstructured FIR for an IF construct. /// The initial statement may be either an IfStmt or an IfThenStmt. void genFIR(const Fortran::parser::IfConstruct &) { mlir::Location loc = toLocation(); Fortran::lower::pft::Evaluation &eval = getEval(); if (eval.lowerAsStructured()) { // Structured fir.if nest. fir::IfOp topIfOp, currentIfOp; for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) { auto genIfOp = [&](mlir::Value cond) { auto ifOp = builder->create(loc, cond, /*withElse=*/true); builder->setInsertionPointToStart(&ifOp.getThenRegion().front()); return ifOp; }; if (auto *s = e.getIf()) { topIfOp = currentIfOp = genIfOp(genIfCondition(s, e.negateCondition)); } else if (auto *s = e.getIf()) { topIfOp = currentIfOp = genIfOp(genIfCondition(s, e.negateCondition)); } else if (auto *s = e.getIf()) { builder->setInsertionPointToStart( ¤tIfOp.getElseRegion().front()); currentIfOp = genIfOp(genIfCondition(s)); } else if (e.isA()) { builder->setInsertionPointToStart( ¤tIfOp.getElseRegion().front()); } else if (e.isA()) { builder->setInsertionPointAfter(topIfOp); genFIR(e, /*unstructuredContext=*/false); // may generate branch } else { genFIR(e, /*unstructuredContext=*/false); } } return; } // Unstructured branch sequence. for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) { auto genIfBranch = [&](mlir::Value cond) { if (e.lexicalSuccessor == e.controlSuccessor) // empty block -> exit genFIRConditionalBranch(cond, e.parentConstruct->constructExit, e.controlSuccessor); else // non-empty block genFIRConditionalBranch(cond, e.lexicalSuccessor, e.controlSuccessor); }; if (auto *s = e.getIf()) { maybeStartBlock(e.block); genIfBranch(genIfCondition(s, e.negateCondition)); } else if (auto *s = e.getIf()) { maybeStartBlock(e.block); genIfBranch(genIfCondition(s, e.negateCondition)); } else if (auto *s = e.getIf()) { startBlock(e.block); genIfBranch(genIfCondition(s)); } else { genFIR(e); } } } void genFIR(const Fortran::parser::CaseConstruct &) { for (Fortran::lower::pft::Evaluation &e : getEval().getNestedEvaluations()) genFIR(e); } template void genNestedStatement(const Fortran::parser::Statement &stmt) { setCurrentPosition(stmt.source); genFIR(stmt.statement); } /// Force the binding of an explicit symbol. This is used to bind and re-bind /// a concurrent control symbol to its value. void forceControlVariableBinding(const Fortran::semantics::Symbol *sym, mlir::Value inducVar) { mlir::Location loc = toLocation(); assert(sym && "There must be a symbol to bind"); mlir::Type toTy = genType(*sym); // FIXME: this should be a "per iteration" temporary. mlir::Value tmp = builder->createTemporary( loc, toTy, toStringRef(sym->name()), llvm::ArrayRef{ Fortran::lower::getAdaptToByRefAttr(*builder)}); mlir::Value cast = builder->createConvert(loc, toTy, inducVar); builder->create(loc, cast, tmp); localSymbols.addSymbol(*sym, tmp, /*force=*/true); } /// Process a concurrent header for a FORALL. (Concurrent headers for DO /// CONCURRENT loops are lowered elsewhere.) void genFIR(const Fortran::parser::ConcurrentHeader &header) { llvm::SmallVector lows; llvm::SmallVector highs; llvm::SmallVector steps; if (explicitIterSpace.isOutermostForall()) { // For the outermost forall, we evaluate the bounds expressions once. // Contrastingly, if this forall is nested, the bounds expressions are // assumed to be pure, possibly dependent on outer concurrent control // variables, possibly variant with respect to arguments, and will be // re-evaluated. mlir::Location loc = toLocation(); mlir::Type idxTy = builder->getIndexType(); Fortran::lower::StatementContext &stmtCtx = explicitIterSpace.stmtContext(); auto lowerExpr = [&](auto &e) { return fir::getBase(genExprValue(e, stmtCtx)); }; for (const Fortran::parser::ConcurrentControl &ctrl : std::get>(header.t)) { const Fortran::lower::SomeExpr *lo = Fortran::semantics::GetExpr(std::get<1>(ctrl.t)); const Fortran::lower::SomeExpr *hi = Fortran::semantics::GetExpr(std::get<2>(ctrl.t)); auto &optStep = std::get>(ctrl.t); lows.push_back(builder->createConvert(loc, idxTy, lowerExpr(*lo))); highs.push_back(builder->createConvert(loc, idxTy, lowerExpr(*hi))); steps.push_back( optStep.has_value() ? builder->createConvert( loc, idxTy, lowerExpr(*Fortran::semantics::GetExpr(*optStep))) : builder->createIntegerConstant(loc, idxTy, 1)); } } auto lambda = [&, lows, highs, steps]() { // Create our iteration space from the header spec. mlir::Location loc = toLocation(); mlir::Type idxTy = builder->getIndexType(); llvm::SmallVector loops; Fortran::lower::StatementContext &stmtCtx = explicitIterSpace.stmtContext(); auto lowerExpr = [&](auto &e) { return fir::getBase(genExprValue(e, stmtCtx)); }; const bool outermost = !lows.empty(); std::size_t headerIndex = 0; for (const Fortran::parser::ConcurrentControl &ctrl : std::get>(header.t)) { const Fortran::semantics::Symbol *ctrlVar = std::get(ctrl.t).symbol; mlir::Value lb; mlir::Value ub; mlir::Value by; if (outermost) { assert(headerIndex < lows.size()); if (headerIndex == 0) explicitIterSpace.resetInnerArgs(); lb = lows[headerIndex]; ub = highs[headerIndex]; by = steps[headerIndex++]; } else { const Fortran::lower::SomeExpr *lo = Fortran::semantics::GetExpr(std::get<1>(ctrl.t)); const Fortran::lower::SomeExpr *hi = Fortran::semantics::GetExpr(std::get<2>(ctrl.t)); auto &optStep = std::get>(ctrl.t); lb = builder->createConvert(loc, idxTy, lowerExpr(*lo)); ub = builder->createConvert(loc, idxTy, lowerExpr(*hi)); by = optStep.has_value() ? builder->createConvert( loc, idxTy, lowerExpr(*Fortran::semantics::GetExpr(*optStep))) : builder->createIntegerConstant(loc, idxTy, 1); } auto lp = builder->create( loc, lb, ub, by, /*unordered=*/true, /*finalCount=*/false, explicitIterSpace.getInnerArgs()); if ((!loops.empty() || !outermost) && !lp.getRegionIterArgs().empty()) builder->create(loc, lp.getResults()); explicitIterSpace.setInnerArgs(lp.getRegionIterArgs()); builder->setInsertionPointToStart(lp.getBody()); forceControlVariableBinding(ctrlVar, lp.getInductionVar()); loops.push_back(lp); } if (outermost) explicitIterSpace.setOuterLoop(loops[0]); explicitIterSpace.appendLoops(loops); if (const auto &mask = std::get>( header.t); mask.has_value()) { mlir::Type i1Ty = builder->getI1Type(); fir::ExtendedValue maskExv = genExprValue(*Fortran::semantics::GetExpr(mask.value()), stmtCtx); mlir::Value cond = builder->createConvert(loc, i1Ty, fir::getBase(maskExv)); auto ifOp = builder->create( loc, explicitIterSpace.innerArgTypes(), cond, /*withElseRegion=*/true); builder->create(loc, ifOp.getResults()); builder->setInsertionPointToStart(&ifOp.getElseRegion().front()); builder->create(loc, explicitIterSpace.getInnerArgs()); builder->setInsertionPointToStart(&ifOp.getThenRegion().front()); } }; // Push the lambda to gen the loop nest context. explicitIterSpace.pushLoopNest(lambda); } void genFIR(const Fortran::parser::ForallAssignmentStmt &stmt) { std::visit([&](const auto &x) { genFIR(x); }, stmt.u); } void genFIR(const Fortran::parser::EndForallStmt &) { cleanupExplicitSpace(); } template void prepareExplicitSpace(const A &forall) { if (!explicitIterSpace.isActive()) analyzeExplicitSpace(forall); localSymbols.pushScope(); explicitIterSpace.enter(); } /// Cleanup all the FORALL context information when we exit. void cleanupExplicitSpace() { explicitIterSpace.leave(); localSymbols.popScope(); } /// Generate FIR for a FORALL statement. void genFIR(const Fortran::parser::ForallStmt &stmt) { prepareExplicitSpace(stmt); genFIR(std::get< Fortran::common::Indirection>( stmt.t) .value()); genFIR(std::get>(stmt.t) .statement); cleanupExplicitSpace(); } /// Generate FIR for a FORALL construct. void genFIR(const Fortran::parser::ForallConstruct &forall) { prepareExplicitSpace(forall); genNestedStatement( std::get< Fortran::parser::Statement>( forall.t)); for (const Fortran::parser::ForallBodyConstruct &s : std::get>(forall.t)) { std::visit( Fortran::common::visitors{ [&](const Fortran::parser::WhereConstruct &b) { genFIR(b); }, [&](const Fortran::common::Indirection< Fortran::parser::ForallConstruct> &b) { genFIR(b.value()); }, [&](const auto &b) { genNestedStatement(b); }}, s.u); } genNestedStatement( std::get>( forall.t)); } /// Lower the concurrent header specification. void genFIR(const Fortran::parser::ForallConstructStmt &stmt) { genFIR(std::get< Fortran::common::Indirection>( stmt.t) .value()); } void genFIR(const Fortran::parser::CompilerDirective &) { mlir::emitWarning(toLocation(), "ignoring all compiler directives"); } void genFIR(const Fortran::parser::OpenACCConstruct &acc) { mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint(); genOpenACCConstruct(*this, bridge.getSemanticsContext(), getEval(), acc); for (Fortran::lower::pft::Evaluation &e : getEval().getNestedEvaluations()) genFIR(e); builder->restoreInsertionPoint(insertPt); } void genFIR(const Fortran::parser::OpenACCDeclarativeConstruct &accDecl) { mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint(); genOpenACCDeclarativeConstruct(*this, getEval(), accDecl); for (Fortran::lower::pft::Evaluation &e : getEval().getNestedEvaluations()) genFIR(e); builder->restoreInsertionPoint(insertPt); } void genFIR(const Fortran::parser::OpenMPConstruct &omp) { mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint(); localSymbols.pushScope(); genOpenMPConstruct(*this, getEval(), omp); const Fortran::parser::OpenMPLoopConstruct *ompLoop = std::get_if(&omp.u); // If loop is part of an OpenMP Construct then the OpenMP dialect // workshare loop operation has already been created. Only the // body needs to be created here and the do_loop can be skipped. // Skip the number of collapsed loops, which is 1 when there is a // no collapse requested. Fortran::lower::pft::Evaluation *curEval = &getEval(); const Fortran::parser::OmpClauseList *loopOpClauseList = nullptr; if (ompLoop) { loopOpClauseList = &std::get( std::get(ompLoop->t).t); int64_t collapseValue = Fortran::lower::getCollapseValue(*loopOpClauseList); curEval = &curEval->getFirstNestedEvaluation(); for (int64_t i = 1; i < collapseValue; i++) { curEval = &*std::next(curEval->getNestedEvaluations().begin()); } } for (Fortran::lower::pft::Evaluation &e : curEval->getNestedEvaluations()) genFIR(e); if (ompLoop) genOpenMPReduction(*this, *loopOpClauseList); localSymbols.popScope(); builder->restoreInsertionPoint(insertPt); } void genFIR(const Fortran::parser::OpenMPDeclarativeConstruct &ompDecl) { mlir::OpBuilder::InsertPoint insertPt = builder->saveInsertionPoint(); genOpenMPDeclarativeConstruct(*this, getEval(), ompDecl); for (Fortran::lower::pft::Evaluation &e : getEval().getNestedEvaluations()) genFIR(e); builder->restoreInsertionPoint(insertPt); } /// Generate FIR for a SELECT CASE statement. /// The type may be CHARACTER, INTEGER, or LOGICAL. void genFIR(const Fortran::parser::SelectCaseStmt &stmt) { Fortran::lower::pft::Evaluation &eval = getEval(); mlir::MLIRContext *context = builder->getContext(); mlir::Location loc = toLocation(); Fortran::lower::StatementContext stmtCtx; const Fortran::lower::SomeExpr *expr = Fortran::semantics::GetExpr( std::get>(stmt.t)); bool isCharSelector = isCharacterCategory(expr->GetType()->category()); bool isLogicalSelector = isLogicalCategory(expr->GetType()->category()); auto charValue = [&](const Fortran::lower::SomeExpr *expr) { fir::ExtendedValue exv = genExprAddr(*expr, stmtCtx, &loc); return exv.match( [&](const fir::CharBoxValue &cbv) { return fir::factory::CharacterExprHelper{*builder, loc} .createEmboxChar(cbv.getAddr(), cbv.getLen()); }, [&](auto) { fir::emitFatalError(loc, "not a character"); return mlir::Value{}; }); }; mlir::Value selector; if (isCharSelector) { selector = charValue(expr); } else { selector = createFIRExpr(loc, expr, stmtCtx); if (isLogicalSelector) selector = builder->createConvert(loc, builder->getI1Type(), selector); } mlir::Type selectType = selector.getType(); llvm::SmallVector attrList; llvm::SmallVector valueList; llvm::SmallVector blockList; mlir::Block *defaultBlock = eval.parentConstruct->constructExit->block; using CaseValue = Fortran::parser::Scalar; auto addValue = [&](const CaseValue &caseValue) { const Fortran::lower::SomeExpr *expr = Fortran::semantics::GetExpr(caseValue.thing); if (isCharSelector) valueList.push_back(charValue(expr)); else if (isLogicalSelector) valueList.push_back(builder->createConvert( loc, selectType, createFIRExpr(toLocation(), expr, stmtCtx))); else valueList.push_back(builder->createIntegerConstant( loc, selectType, *Fortran::evaluate::ToInt64(*expr))); }; for (Fortran::lower::pft::Evaluation *e = eval.controlSuccessor; e; e = e->controlSuccessor) { const auto &caseStmt = e->getIf(); assert(e->block && "missing CaseStmt block"); const auto &caseSelector = std::get(caseStmt->t); const auto *caseValueRangeList = std::get_if>( &caseSelector.u); if (!caseValueRangeList) { defaultBlock = e->block; continue; } for (const Fortran::parser::CaseValueRange &caseValueRange : *caseValueRangeList) { blockList.push_back(e->block); if (const auto *caseValue = std::get_if(&caseValueRange.u)) { attrList.push_back(fir::PointIntervalAttr::get(context)); addValue(*caseValue); continue; } const auto &caseRange = std::get(caseValueRange.u); if (caseRange.lower && caseRange.upper) { attrList.push_back(fir::ClosedIntervalAttr::get(context)); addValue(*caseRange.lower); addValue(*caseRange.upper); } else if (caseRange.lower) { attrList.push_back(fir::LowerBoundAttr::get(context)); addValue(*caseRange.lower); } else { attrList.push_back(fir::UpperBoundAttr::get(context)); addValue(*caseRange.upper); } } } // Skip a logical default block that can never be referenced. if (isLogicalSelector && attrList.size() == 2) defaultBlock = eval.parentConstruct->constructExit->block; attrList.push_back(mlir::UnitAttr::get(context)); blockList.push_back(defaultBlock); // Generate a fir::SelectCaseOp. // Explicit branch code is better for the LOGICAL type. The CHARACTER type // does not yet have downstream support, and also uses explicit branch code. // The -no-structured-fir option can be used to force generation of INTEGER // type branch code. if (!isLogicalSelector && !isCharSelector && eval.lowerAsStructured()) { // Numeric selector is a ssa register, all temps that may have // been generated while evaluating it can be cleaned-up before the // fir.select_case. stmtCtx.finalize(); builder->create(loc, selector, attrList, valueList, blockList); return; } // Generate a sequence of case value comparisons and branches. auto caseValue = valueList.begin(); auto caseBlock = blockList.begin(); bool skipFinalization = false; for (const auto &attr : llvm::enumerate(attrList)) { if (attr.value().isa()) { if (attrList.size() == 1) stmtCtx.finalize(); genFIRBranch(*caseBlock++); break; } auto genCond = [&](mlir::Value rhs, mlir::arith::CmpIPredicate pred) -> mlir::Value { if (!isCharSelector) return builder->create(loc, pred, selector, rhs); fir::factory::CharacterExprHelper charHelper{*builder, loc}; std::pair lhsVal = charHelper.createUnboxChar(selector); mlir::Value &lhsAddr = lhsVal.first; mlir::Value &lhsLen = lhsVal.second; std::pair rhsVal = charHelper.createUnboxChar(rhs); mlir::Value &rhsAddr = rhsVal.first; mlir::Value &rhsLen = rhsVal.second; mlir::Value result = fir::runtime::genCharCompare( *builder, loc, pred, lhsAddr, lhsLen, rhsAddr, rhsLen); if (stmtCtx.workListIsEmpty() || skipFinalization) return result; if (attr.index() == attrList.size() - 2) { stmtCtx.finalize(); return result; } fir::IfOp ifOp = builder->create(loc, result, /*withElseRegion=*/false); builder->setInsertionPointToStart(&ifOp.getThenRegion().front()); stmtCtx.finalizeAndKeep(); builder->setInsertionPointAfter(ifOp); return result; }; mlir::Block *newBlock = insertBlock(*caseBlock); if (attr.value().isa()) { mlir::Block *newBlock2 = insertBlock(*caseBlock); skipFinalization = true; mlir::Value cond = genCond(*caseValue++, mlir::arith::CmpIPredicate::sge); genFIRConditionalBranch(cond, newBlock, newBlock2); builder->setInsertionPointToEnd(newBlock); skipFinalization = false; mlir::Value cond2 = genCond(*caseValue++, mlir::arith::CmpIPredicate::sle); genFIRConditionalBranch(cond2, *caseBlock++, newBlock2); builder->setInsertionPointToEnd(newBlock2); continue; } mlir::arith::CmpIPredicate pred; if (attr.value().isa()) { pred = mlir::arith::CmpIPredicate::eq; } else if (attr.value().isa()) { pred = mlir::arith::CmpIPredicate::sge; } else { assert(attr.value().isa() && "unexpected predicate"); pred = mlir::arith::CmpIPredicate::sle; } mlir::Value cond = genCond(*caseValue++, pred); genFIRConditionalBranch(cond, *caseBlock++, newBlock); builder->setInsertionPointToEnd(newBlock); } assert(caseValue == valueList.end() && caseBlock == blockList.end() && "select case list mismatch"); assert(stmtCtx.workListIsEmpty() && "statement context must be empty"); } fir::ExtendedValue genAssociateSelector(const Fortran::lower::SomeExpr &selector, Fortran::lower::StatementContext &stmtCtx) { return Fortran::lower::isArraySectionWithoutVectorSubscript(selector) ? Fortran::lower::createSomeArrayBox(*this, selector, localSymbols, stmtCtx) : genExprAddr(selector, stmtCtx); } void genFIR(const Fortran::parser::AssociateConstruct &) { Fortran::lower::StatementContext stmtCtx; Fortran::lower::pft::Evaluation &eval = getEval(); for (Fortran::lower::pft::Evaluation &e : eval.getNestedEvaluations()) { if (auto *stmt = e.getIf()) { if (eval.lowerAsUnstructured()) maybeStartBlock(e.block); localSymbols.pushScope(); for (const Fortran::parser::Association &assoc : std::get>(stmt->t)) { Fortran::semantics::Symbol &sym = *std::get(assoc.t).symbol; const Fortran::lower::SomeExpr &selector = *sym.get().expr(); localSymbols.addSymbol(sym, genAssociateSelector(selector, stmtCtx)); } } else if (e.getIf()) { if (eval.lowerAsUnstructured()) maybeStartBlock(e.block); stmtCtx.finalize(); localSymbols.popScope(); } else { genFIR(e); } } } void genFIR(const Fortran::parser::BlockConstruct &blockConstruct) { setCurrentPositionAt(blockConstruct); TODO(toLocation(), "BlockConstruct implementation"); } void genFIR(const Fortran::parser::BlockStmt &) { TODO(toLocation(), "BlockStmt implementation"); } void genFIR(const Fortran::parser::EndBlockStmt &) { TODO(toLocation(), "EndBlockStmt implementation"); } void genFIR(const Fortran::parser::ChangeTeamConstruct &construct) { TODO(toLocation(), "ChangeTeamConstruct implementation"); } void genFIR(const Fortran::parser::ChangeTeamStmt &stmt) { TODO(toLocation(), "ChangeTeamStmt implementation"); } void genFIR(const Fortran::parser::EndChangeTeamStmt &stmt) { TODO(toLocation(), "EndChangeTeamStmt implementation"); } void genFIR(const Fortran::parser::CriticalConstruct &criticalConstruct) { setCurrentPositionAt(criticalConstruct); TODO(toLocation(), "CriticalConstruct implementation"); } void genFIR(const Fortran::parser::CriticalStmt &) { TODO(toLocation(), "CriticalStmt implementation"); } void genFIR(const Fortran::parser::EndCriticalStmt &) { TODO(toLocation(), "EndCriticalStmt implementation"); } void genFIR(const Fortran::parser::SelectRankConstruct &selectRankConstruct) { setCurrentPositionAt(selectRankConstruct); TODO(toLocation(), "SelectRankConstruct implementation"); } void genFIR(const Fortran::parser::SelectRankStmt &) { TODO(toLocation(), "SelectRankStmt implementation"); } void genFIR(const Fortran::parser::SelectRankCaseStmt &) { TODO(toLocation(), "SelectRankCaseStmt implementation"); } void genFIR(const Fortran::parser::SelectTypeConstruct &selectTypeConstruct) { mlir::Location loc = toLocation(); mlir::MLIRContext *context = builder->getContext(); Fortran::lower::StatementContext stmtCtx; fir::ExtendedValue selector; llvm::SmallVector attrList; llvm::SmallVector blockList; unsigned typeGuardIdx = 0; bool hasLocalScope = false; for (Fortran::lower::pft::Evaluation &eval : getEval().getNestedEvaluations()) { if (auto *selectTypeStmt = eval.getIf()) { // A genFIR(SelectTypeStmt) call would have unwanted side effects. maybeStartBlock(eval.block); // Retrieve the selector const auto &s = std::get(selectTypeStmt->t); if (const auto *v = std::get_if(&s.u)) selector = genExprBox(loc, *Fortran::semantics::GetExpr(*v), stmtCtx); else fir::emitFatalError( loc, "selector with expr not expected in select type statement"); // Going through the controlSuccessor first to create the // fir.select_type operation. mlir::Block *defaultBlock = eval.parentConstruct->constructExit->block; for (Fortran::lower::pft::Evaluation *e = eval.controlSuccessor; e; e = e->controlSuccessor) { const auto &typeGuardStmt = e->getIf(); const auto &guard = std::get(typeGuardStmt->t); assert(e->block && "missing TypeGuardStmt block"); // CLASS DEFAULT if (std::holds_alternative(guard.u)) { defaultBlock = e->block; continue; } blockList.push_back(e->block); if (const auto *typeSpec = std::get_if(&guard.u)) { // TYPE IS mlir::Type ty; if (std::holds_alternative( typeSpec->u)) { const Fortran::semantics::IntrinsicTypeSpec *intrinsic = typeSpec->declTypeSpec->AsIntrinsic(); int kind = Fortran::evaluate::ToInt64(intrinsic->kind()).value_or(kind); llvm::SmallVector params; ty = genType(intrinsic->category(), kind, params); } else { const Fortran::semantics::DerivedTypeSpec *derived = typeSpec->declTypeSpec->AsDerived(); ty = genType(*derived); } attrList.push_back(fir::ExactTypeAttr::get(ty)); } else if (const auto *derived = std::get_if( &guard.u)) { // CLASS IS assert(derived->derivedTypeSpec && "derived type spec is null"); mlir::Type ty = genType(*(derived->derivedTypeSpec)); attrList.push_back(fir::SubclassAttr::get(ty)); } } attrList.push_back(mlir::UnitAttr::get(context)); blockList.push_back(defaultBlock); builder->create(loc, fir::getBase(selector), attrList, blockList); } else if (auto *typeGuardStmt = eval.getIf()) { // Map the type guard local symbol for the selector to a more precise // typed entity in the TypeGuardStmt when necessary. genFIR(eval); const auto &guard = std::get(typeGuardStmt->t); if (hasLocalScope) localSymbols.popScope(); localSymbols.pushScope(); hasLocalScope = true; assert(attrList.size() >= typeGuardIdx && "TypeGuard attribute missing"); mlir::Attribute typeGuardAttr = attrList[typeGuardIdx]; mlir::Block *typeGuardBlock = blockList[typeGuardIdx]; const Fortran::semantics::Scope &guardScope = bridge.getSemanticsContext().FindScope(eval.position); mlir::OpBuilder::InsertPoint crtInsPt = builder->saveInsertionPoint(); builder->setInsertionPointToStart(typeGuardBlock); auto addAssocEntitySymbol = [&](fir::ExtendedValue exv) { for (auto &symbol : guardScope.GetSymbols()) { if (symbol->GetUltimate() .detailsIf()) { localSymbols.addSymbol(symbol, exv); break; } } }; mlir::Type baseTy = fir::getBase(selector).getType(); bool isPointer = fir::isPointerType(baseTy); bool isAllocatable = fir::isAllocatableType(baseTy); bool isArray = fir::dyn_cast_ptrOrBoxEleTy(baseTy).isa(); const fir::BoxValue *selectorBox = selector.getBoxOf(); if (std::holds_alternative(guard.u)) { // CLASS DEFAULT addAssocEntitySymbol(selector); } else if (const auto *typeSpec = std::get_if(&guard.u)) { // TYPE IS fir::ExactTypeAttr attr = typeGuardAttr.dyn_cast(); mlir::Value exactValue; mlir::Type addrTy = attr.getType(); if (isArray) { auto seqTy = fir::dyn_cast_ptrOrBoxEleTy(baseTy) .dyn_cast(); addrTy = fir::SequenceType::get(seqTy.getShape(), attr.getType()); } if (isPointer) addrTy = fir::PointerType::get(addrTy); if (isAllocatable) addrTy = fir::HeapType::get(addrTy); if (std::holds_alternative( typeSpec->u)) { mlir::Type refTy = fir::ReferenceType::get(addrTy); if (isPointer || isAllocatable) refTy = addrTy; exactValue = builder->create( loc, refTy, fir::getBase(selector)); const Fortran::semantics::IntrinsicTypeSpec *intrinsic = typeSpec->declTypeSpec->AsIntrinsic(); if (isArray) { mlir::Value exact = builder->create( loc, fir::BoxType::get(addrTy), fir::getBase(selector)); addAssocEntitySymbol(selectorBox->clone(exact)); } else if (intrinsic->category() == Fortran::common::TypeCategory::Character) { auto charTy = attr.getType().dyn_cast(); mlir::Value charLen = fir::factory::CharacterExprHelper(*builder, loc) .readLengthFromBox(fir::getBase(selector), charTy); addAssocEntitySymbol(fir::CharBoxValue(exactValue, charLen)); } else { addAssocEntitySymbol(exactValue); } } else if (std::holds_alternative( typeSpec->u)) { exactValue = builder->create( loc, fir::BoxType::get(addrTy), fir::getBase(selector)); addAssocEntitySymbol(selectorBox->clone(exactValue)); } } else if (std::holds_alternative( guard.u)) { // CLASS IS fir::SubclassAttr attr = typeGuardAttr.dyn_cast(); mlir::Type addrTy = attr.getType(); if (isArray) { auto seqTy = fir::dyn_cast_ptrOrBoxEleTy(baseTy) .dyn_cast(); addrTy = fir::SequenceType::get(seqTy.getShape(), attr.getType()); } if (isPointer) addrTy = fir::PointerType::get(addrTy); if (isAllocatable) addrTy = fir::HeapType::get(addrTy); mlir::Type classTy = fir::ClassType::get(addrTy); if (classTy == baseTy) { addAssocEntitySymbol(selector); } else { mlir::Value derived = builder->create( loc, classTy, fir::getBase(selector)); addAssocEntitySymbol(selectorBox->clone(derived)); } } builder->restoreInsertionPoint(crtInsPt); ++typeGuardIdx; } else if (eval.getIf()) { genFIR(eval); if (hasLocalScope) localSymbols.popScope(); stmtCtx.finalize(); } else { genFIR(eval); } } } //===--------------------------------------------------------------------===// // IO statements (see io.h) //===--------------------------------------------------------------------===// void genFIR(const Fortran::parser::BackspaceStmt &stmt) { mlir::Value iostat = genBackspaceStatement(*this, stmt); genIoConditionBranches(getEval(), stmt.v, iostat); } void genFIR(const Fortran::parser::CloseStmt &stmt) { mlir::Value iostat = genCloseStatement(*this, stmt); genIoConditionBranches(getEval(), stmt.v, iostat); } void genFIR(const Fortran::parser::EndfileStmt &stmt) { mlir::Value iostat = genEndfileStatement(*this, stmt); genIoConditionBranches(getEval(), stmt.v, iostat); } void genFIR(const Fortran::parser::FlushStmt &stmt) { mlir::Value iostat = genFlushStatement(*this, stmt); genIoConditionBranches(getEval(), stmt.v, iostat); } void genFIR(const Fortran::parser::InquireStmt &stmt) { mlir::Value iostat = genInquireStatement(*this, stmt); if (const auto *specs = std::get_if>(&stmt.u)) genIoConditionBranches(getEval(), *specs, iostat); } void genFIR(const Fortran::parser::OpenStmt &stmt) { mlir::Value iostat = genOpenStatement(*this, stmt); genIoConditionBranches(getEval(), stmt.v, iostat); } void genFIR(const Fortran::parser::PrintStmt &stmt) { genPrintStatement(*this, stmt); } void genFIR(const Fortran::parser::ReadStmt &stmt) { mlir::Value iostat = genReadStatement(*this, stmt); genIoConditionBranches(getEval(), stmt.controls, iostat); } void genFIR(const Fortran::parser::RewindStmt &stmt) { mlir::Value iostat = genRewindStatement(*this, stmt); genIoConditionBranches(getEval(), stmt.v, iostat); } void genFIR(const Fortran::parser::WaitStmt &stmt) { mlir::Value iostat = genWaitStatement(*this, stmt); genIoConditionBranches(getEval(), stmt.v, iostat); } void genFIR(const Fortran::parser::WriteStmt &stmt) { mlir::Value iostat = genWriteStatement(*this, stmt); genIoConditionBranches(getEval(), stmt.controls, iostat); } template void genIoConditionBranches(Fortran::lower::pft::Evaluation &eval, const A &specList, mlir::Value iostat) { if (!iostat) return; mlir::Block *endBlock = nullptr; mlir::Block *eorBlock = nullptr; mlir::Block *errBlock = nullptr; for (const auto &spec : specList) { std::visit(Fortran::common::visitors{ [&](const Fortran::parser::EndLabel &label) { endBlock = blockOfLabel(eval, label.v); }, [&](const Fortran::parser::EorLabel &label) { eorBlock = blockOfLabel(eval, label.v); }, [&](const Fortran::parser::ErrLabel &label) { errBlock = blockOfLabel(eval, label.v); }, [](const auto &) {}}, spec.u); } if (!endBlock && !eorBlock && !errBlock) return; mlir::Location loc = toLocation(); mlir::Type indexType = builder->getIndexType(); mlir::Value selector = builder->createConvert(loc, indexType, iostat); llvm::SmallVector indexList; llvm::SmallVector blockList; if (eorBlock) { indexList.push_back(Fortran::runtime::io::IostatEor); blockList.push_back(eorBlock); } if (endBlock) { indexList.push_back(Fortran::runtime::io::IostatEnd); blockList.push_back(endBlock); } if (errBlock) { indexList.push_back(0); blockList.push_back(eval.nonNopSuccessor().block); // ERR label statement is the default successor. blockList.push_back(errBlock); } else { // Fallthrough successor statement is the default successor. blockList.push_back(eval.nonNopSuccessor().block); } builder->create(loc, selector, indexList, blockList); } //===--------------------------------------------------------------------===// // Memory allocation and deallocation //===--------------------------------------------------------------------===// void genFIR(const Fortran::parser::AllocateStmt &stmt) { Fortran::lower::genAllocateStmt(*this, stmt, toLocation()); } void genFIR(const Fortran::parser::DeallocateStmt &stmt) { Fortran::lower::genDeallocateStmt(*this, stmt, toLocation()); } /// Nullify pointer object list /// /// For each pointer object, reset the pointer to a disassociated status. /// We do this by setting each pointer to null. void genFIR(const Fortran::parser::NullifyStmt &stmt) { mlir::Location loc = toLocation(); for (auto &pointerObject : stmt.v) { const Fortran::lower::SomeExpr *expr = Fortran::semantics::GetExpr(pointerObject); assert(expr); fir::MutableBoxValue box = genExprMutableBox(loc, *expr); fir::factory::disassociateMutableBox(*builder, loc, box); } } //===--------------------------------------------------------------------===// void genFIR(const Fortran::parser::EventPostStmt &stmt) { genEventPostStatement(*this, stmt); } void genFIR(const Fortran::parser::EventWaitStmt &stmt) { genEventWaitStatement(*this, stmt); } void genFIR(const Fortran::parser::FormTeamStmt &stmt) { genFormTeamStatement(*this, getEval(), stmt); } void genFIR(const Fortran::parser::LockStmt &stmt) { genLockStatement(*this, stmt); } fir::ExtendedValue genInitializerExprValue(const Fortran::lower::SomeExpr &expr, Fortran::lower::StatementContext &stmtCtx) { return Fortran::lower::createSomeInitializerExpression( toLocation(), *this, expr, localSymbols, stmtCtx); } /// Return true if the current context is a conditionalized and implied /// iteration space. bool implicitIterationSpace() { return !implicitIterSpace.empty(); } /// Return true if context is currently an explicit iteration space. A scalar /// assignment expression may be contextually within a user-defined iteration /// space, transforming it into an array expression. bool explicitIterationSpace() { return explicitIterSpace.isActive(); } /// Generate an array assignment. /// This is an assignment expression with rank > 0. The assignment may or may /// not be in a WHERE and/or FORALL context. /// In a FORALL context, the assignment may be a pointer assignment and the \p /// lbounds and \p ubounds parameters should only be used in such a pointer /// assignment case. (If both are None then the array assignment cannot be a /// pointer assignment.) void genArrayAssignment( const Fortran::evaluate::Assignment &assign, Fortran::lower::StatementContext &localStmtCtx, std::optional> lbounds = std::nullopt, std::optional> ubounds = std::nullopt) { Fortran::lower::StatementContext &stmtCtx = explicitIterationSpace() ? explicitIterSpace.stmtContext() : (implicitIterationSpace() ? implicitIterSpace.stmtContext() : localStmtCtx); if (Fortran::lower::isWholeAllocatable(assign.lhs)) { // Assignment to allocatables may require the lhs to be // deallocated/reallocated. See Fortran 2018 10.2.1.3 p3 Fortran::lower::createAllocatableArrayAssignment( *this, assign.lhs, assign.rhs, explicitIterSpace, implicitIterSpace, localSymbols, stmtCtx); return; } if (lbounds) { // Array of POINTER entities, with elemental assignment. if (!Fortran::lower::isWholePointer(assign.lhs)) fir::emitFatalError(toLocation(), "pointer assignment to non-pointer"); Fortran::lower::createArrayOfPointerAssignment( *this, assign.lhs, assign.rhs, explicitIterSpace, implicitIterSpace, *lbounds, ubounds, localSymbols, stmtCtx); return; } if (!implicitIterationSpace() && !explicitIterationSpace()) { // No masks and the iteration space is implied by the array, so create a // simple array assignment. Fortran::lower::createSomeArrayAssignment(*this, assign.lhs, assign.rhs, localSymbols, stmtCtx); return; } // If there is an explicit iteration space, generate an array assignment // with a user-specified iteration space and possibly with masks. These // assignments may *appear* to be scalar expressions, but the scalar // expression is evaluated at all points in the user-defined space much like // an ordinary array assignment. More specifically, the semantics inside the // FORALL much more closely resembles that of WHERE than a scalar // assignment. // Otherwise, generate a masked array assignment. The iteration space is // implied by the lhs array expression. Fortran::lower::createAnyMaskedArrayAssignment( *this, assign.lhs, assign.rhs, explicitIterSpace, implicitIterSpace, localSymbols, stmtCtx); } #if !defined(NDEBUG) static bool isFuncResultDesignator(const Fortran::lower::SomeExpr &expr) { const Fortran::semantics::Symbol *sym = Fortran::evaluate::GetFirstSymbol(expr); return sym && sym->IsFuncResult(); } #endif inline fir::MutableBoxValue genExprMutableBox(mlir::Location loc, const Fortran::lower::SomeExpr &expr) override final { return Fortran::lower::createMutableBox(loc, *this, expr, localSymbols); } /// Shared for both assignments and pointer assignments. void genAssignment(const Fortran::evaluate::Assignment &assign) { Fortran::lower::StatementContext stmtCtx; mlir::Location loc = toLocation(); if (bridge.getLoweringOptions().getLowerToHighLevelFIR()) { if (explicitIterationSpace() || !implicitIterSpace.empty()) TODO(loc, "HLFIR assignment inside FORALL or WHERE"); auto &builder = getFirOpBuilder(); std::visit( Fortran::common::visitors{ // [1] Plain old assignment. [&](const Fortran::evaluate::Assignment::Intrinsic &) { if (Fortran::lower::isWholeAllocatable(assign.lhs)) TODO(loc, "HLFIR assignment to whole allocatable"); hlfir::EntityWithAttributes rhs = Fortran::lower::convertExprToHLFIR(loc, *this, assign.rhs, localSymbols, stmtCtx); hlfir::EntityWithAttributes lhs = Fortran::lower::convertExprToHLFIR(loc, *this, assign.lhs, localSymbols, stmtCtx); builder.create(loc, rhs, lhs); }, // [2] User defined assignment. If the context is a scalar // expression then call the procedure. [&](const Fortran::evaluate::ProcedureRef &procRef) { TODO(loc, "HLFIR user defined assignment"); }, // [3] Pointer assignment with possibly empty bounds-spec. R1035: // a bounds-spec is a lower bound value. [&](const Fortran::evaluate::Assignment::BoundsSpec &lbExprs) { TODO(loc, "HLFIR pointer assignment"); }, // [4] Pointer assignment with bounds-remapping. R1036: a // bounds-remapping is a pair, lower bound and upper bound. [&](const Fortran::evaluate::Assignment::BoundsRemapping) { TODO(loc, "HLFIR pointer assignment with bounds remapping"); }, }, assign.u); return; } if (explicitIterationSpace()) { Fortran::lower::createArrayLoads(*this, explicitIterSpace, localSymbols); explicitIterSpace.genLoopNest(); } std::visit( Fortran::common::visitors{ // [1] Plain old assignment. [&](const Fortran::evaluate::Assignment::Intrinsic &) { const Fortran::semantics::Symbol *sym = Fortran::evaluate::GetLastSymbol(assign.lhs); if (!sym) TODO(loc, "assignment to pointer result of function reference"); std::optional lhsType = assign.lhs.GetType(); assert(lhsType && "lhs cannot be typeless"); // Assignment to polymorphic allocatables may require changing the // variable dynamic type (See Fortran 2018 10.2.1.3 p3). if (lhsType->IsPolymorphic() && Fortran::lower::isWholeAllocatable(assign.lhs)) { mlir::Value lhs = genExprMutableBox(loc, assign.lhs).getAddr(); mlir::Value rhs = fir::getBase(genExprBox(loc, assign.rhs, stmtCtx)); fir::runtime::genAssign(*builder, loc, lhs, rhs); return; } // Note: No ad-hoc handling for pointers is required here. The // target will be assigned as per 2018 10.2.1.3 p2. genExprAddr // on a pointer returns the target address and not the address of // the pointer variable. if (assign.lhs.Rank() > 0 || explicitIterationSpace()) { // Array assignment // See Fortran 2018 10.2.1.3 p5, p6, and p7 genArrayAssignment(assign, stmtCtx); return; } // Scalar assignment const bool isNumericScalar = isNumericScalarCategory(lhsType->category()); fir::ExtendedValue rhs = isNumericScalar ? genExprValue(assign.rhs, stmtCtx) : genExprAddr(assign.rhs, stmtCtx); const bool lhsIsWholeAllocatable = Fortran::lower::isWholeAllocatable(assign.lhs); std::optional lhsRealloc; std::optional lhsMutableBox; auto lhs = [&]() -> fir::ExtendedValue { if (lhsIsWholeAllocatable) { lhsMutableBox = genExprMutableBox(loc, assign.lhs); llvm::SmallVector lengthParams; if (const fir::CharBoxValue *charBox = rhs.getCharBox()) lengthParams.push_back(charBox->getLen()); else if (fir::isDerivedWithLenParameters(rhs)) TODO(loc, "assignment to derived type allocatable with " "LEN parameters"); lhsRealloc = fir::factory::genReallocIfNeeded( *builder, loc, *lhsMutableBox, /*shape=*/std::nullopt, lengthParams); return lhsRealloc->newValue; } return genExprAddr(assign.lhs, stmtCtx); }(); if (isNumericScalar) { // Fortran 2018 10.2.1.3 p8 and p9 // Conversions should have been inserted by semantic analysis, // but they can be incorrect between the rhs and lhs. Correct // that here. mlir::Value addr = fir::getBase(lhs); mlir::Value val = fir::getBase(rhs); // A function with multiple entry points returning different // types tags all result variables with one of the largest // types to allow them to share the same storage. Assignment // to a result variable of one of the other types requires // conversion to the actual type. mlir::Type toTy = genType(assign.lhs); mlir::Value cast = builder->convertWithSemantics(loc, toTy, val); if (fir::dyn_cast_ptrEleTy(addr.getType()) != toTy) { assert(isFuncResultDesignator(assign.lhs) && "type mismatch"); addr = builder->createConvert( toLocation(), builder->getRefType(toTy), addr); } builder->create(loc, cast, addr); } else if (isCharacterCategory(lhsType->category())) { // Fortran 2018 10.2.1.3 p10 and p11 fir::factory::CharacterExprHelper{*builder, loc}.createAssign( lhs, rhs); } else if (isDerivedCategory(lhsType->category())) { // Fortran 2018 10.2.1.3 p13 and p14 // Recursively gen an assignment on each element pair. fir::factory::genRecordAssignment(*builder, loc, lhs, rhs); } else { llvm_unreachable("unknown category"); } if (lhsIsWholeAllocatable) { assert(lhsRealloc.has_value()); fir::factory::finalizeRealloc(*builder, loc, *lhsMutableBox, /*lbounds=*/std::nullopt, /*takeLboundsIfRealloc=*/false, *lhsRealloc); } }, // [2] User defined assignment. If the context is a scalar // expression then call the procedure. [&](const Fortran::evaluate::ProcedureRef &procRef) { Fortran::lower::StatementContext &ctx = explicitIterationSpace() ? explicitIterSpace.stmtContext() : stmtCtx; Fortran::lower::createSubroutineCall( *this, procRef, explicitIterSpace, implicitIterSpace, localSymbols, ctx, /*isUserDefAssignment=*/true); }, // [3] Pointer assignment with possibly empty bounds-spec. R1035: a // bounds-spec is a lower bound value. [&](const Fortran::evaluate::Assignment::BoundsSpec &lbExprs) { if (Fortran::evaluate::IsProcedure(assign.rhs)) TODO(loc, "procedure pointer assignment"); std::optional lhsType = assign.lhs.GetType(); // Delegate pointer association to unlimited polymorphic pointer // to the runtime. element size, type code, attribute and of // course base_addr might need to be updated. if (lhsType && lhsType->IsPolymorphic()) { if (explicitIterationSpace()) TODO(loc, "polymorphic pointer assignment in FORALL"); mlir::Value lhs = genExprMutableBox(loc, assign.lhs).getAddr(); mlir::Value rhs = fir::getBase(genExprBox(loc, assign.rhs, stmtCtx)); Fortran::lower::genPointerAssociate(*builder, loc, lhs, rhs); return; } llvm::SmallVector lbounds; for (const Fortran::evaluate::ExtentExpr &lbExpr : lbExprs) lbounds.push_back( fir::getBase(genExprValue(toEvExpr(lbExpr), stmtCtx))); if (explicitIterationSpace()) { // Pointer assignment in FORALL context. Copy the rhs box value // into the lhs box variable. genArrayAssignment(assign, stmtCtx, lbounds); return; } fir::MutableBoxValue lhs = genExprMutableBox(loc, assign.lhs); Fortran::lower::associateMutableBox(*this, loc, lhs, assign.rhs, lbounds, stmtCtx); }, // [4] Pointer assignment with bounds-remapping. R1036: a // bounds-remapping is a pair, lower bound and upper bound. [&](const Fortran::evaluate::Assignment::BoundsRemapping &boundExprs) { llvm::SmallVector lbounds; llvm::SmallVector ubounds; for (const std::pair &pair : boundExprs) { const Fortran::evaluate::ExtentExpr &lbExpr = pair.first; const Fortran::evaluate::ExtentExpr &ubExpr = pair.second; lbounds.push_back( fir::getBase(genExprValue(toEvExpr(lbExpr), stmtCtx))); ubounds.push_back( fir::getBase(genExprValue(toEvExpr(ubExpr), stmtCtx))); } std::optional lhsType = assign.lhs.GetType(); std::optional rhsType = assign.rhs.GetType(); // Polymorphic lhs/rhs need more care. See F2018 10.2.2.3. if ((lhsType && lhsType->IsPolymorphic()) || (rhsType && rhsType->IsPolymorphic())) { if (explicitIterationSpace()) TODO(loc, "polymorphic pointer assignment in FORALL"); mlir::Value lhs = genExprMutableBox(loc, assign.lhs).getAddr(); mlir::Value rhs = fir::getBase(genExprBox(loc, assign.rhs, stmtCtx)); // Create the newRank x 2 array with the bounds to be passed to // the runtime as a descriptor. assert(lbounds.size() && ubounds.size()); mlir::Type indexTy = builder->getIndexType(); mlir::Type boundArrayTy = fir::SequenceType::get( {static_cast(lbounds.size()) * 2}, builder->getI64Type()); mlir::Value boundArray = builder->create(loc, boundArrayTy); mlir::Value array = builder->create(loc, boundArrayTy); for (unsigned i = 0; i < lbounds.size(); ++i) { array = builder->create( loc, boundArrayTy, array, lbounds[i], builder->getArrayAttr({builder->getIntegerAttr( builder->getIndexType(), static_cast(i * 2))})); array = builder->create( loc, boundArrayTy, array, ubounds[i], builder->getArrayAttr({builder->getIntegerAttr( builder->getIndexType(), static_cast(i * 2 + 1))})); } builder->create(loc, array, boundArray); mlir::Type boxTy = fir::BoxType::get(boundArrayTy); mlir::Value ext = builder->createIntegerConstant( loc, indexTy, lbounds.size() * 2); mlir::Value shapeOp = builder->genShape(loc, {ext}); mlir::Value boundsDesc = builder->create( loc, boxTy, boundArray, shapeOp); Fortran::lower::genPointerAssociateRemapping(*builder, loc, lhs, rhs, boundsDesc); return; } if (explicitIterationSpace()) { // Pointer assignment in FORALL context. Copy the rhs box value // into the lhs box variable. genArrayAssignment(assign, stmtCtx, lbounds, ubounds); return; } fir::MutableBoxValue lhs = genExprMutableBox(loc, assign.lhs); if (Fortran::evaluate::UnwrapExpr( assign.rhs)) { fir::factory::disassociateMutableBox(*builder, loc, lhs); return; } // Do not generate a temp in case rhs is an array section. fir::ExtendedValue rhs = Fortran::lower::isArraySectionWithoutVectorSubscript( assign.rhs) ? Fortran::lower::createSomeArrayBox( *this, assign.rhs, localSymbols, stmtCtx) : genExprAddr(assign.rhs, stmtCtx); fir::factory::associateMutableBoxWithRemap(*builder, loc, lhs, rhs, lbounds, ubounds); if (explicitIterationSpace()) { mlir::ValueRange inners = explicitIterSpace.getInnerArgs(); if (!inners.empty()) builder->create(loc, inners); } }, }, assign.u); if (explicitIterationSpace()) Fortran::lower::createArrayMergeStores(*this, explicitIterSpace); } void genFIR(const Fortran::parser::WhereConstruct &c) { implicitIterSpace.growStack(); genNestedStatement( std::get< Fortran::parser::Statement>( c.t)); for (const auto &body : std::get>(c.t)) genFIR(body); for (const auto &e : std::get>( c.t)) genFIR(e); if (const auto &e = std::get>( c.t); e.has_value()) genFIR(*e); genNestedStatement( std::get>( c.t)); } void genFIR(const Fortran::parser::WhereBodyConstruct &body) { std::visit( Fortran::common::visitors{ [&](const Fortran::parser::Statement< Fortran::parser::AssignmentStmt> &stmt) { genNestedStatement(stmt); }, [&](const Fortran::parser::Statement &stmt) { genNestedStatement(stmt); }, [&](const Fortran::common::Indirection< Fortran::parser::WhereConstruct> &c) { genFIR(c.value()); }, }, body.u); } void genFIR(const Fortran::parser::WhereConstructStmt &stmt) { implicitIterSpace.append(Fortran::semantics::GetExpr( std::get(stmt.t))); } void genFIR(const Fortran::parser::WhereConstruct::MaskedElsewhere &ew) { genNestedStatement( std::get< Fortran::parser::Statement>( ew.t)); for (const auto &body : std::get>(ew.t)) genFIR(body); } void genFIR(const Fortran::parser::MaskedElsewhereStmt &stmt) { implicitIterSpace.append(Fortran::semantics::GetExpr( std::get(stmt.t))); } void genFIR(const Fortran::parser::WhereConstruct::Elsewhere &ew) { genNestedStatement( std::get>( ew.t)); for (const auto &body : std::get>(ew.t)) genFIR(body); } void genFIR(const Fortran::parser::ElsewhereStmt &stmt) { implicitIterSpace.append(nullptr); } void genFIR(const Fortran::parser::EndWhereStmt &) { implicitIterSpace.shrinkStack(); } void genFIR(const Fortran::parser::WhereStmt &stmt) { Fortran::lower::StatementContext stmtCtx; const auto &assign = std::get(stmt.t); implicitIterSpace.growStack(); implicitIterSpace.append(Fortran::semantics::GetExpr( std::get(stmt.t))); genAssignment(*assign.typedAssignment->v); implicitIterSpace.shrinkStack(); } void genFIR(const Fortran::parser::PointerAssignmentStmt &stmt) { genAssignment(*stmt.typedAssignment->v); } void genFIR(const Fortran::parser::AssignmentStmt &stmt) { genAssignment(*stmt.typedAssignment->v); } void genFIR(const Fortran::parser::SyncAllStmt &stmt) { genSyncAllStatement(*this, stmt); } void genFIR(const Fortran::parser::SyncImagesStmt &stmt) { genSyncImagesStatement(*this, stmt); } void genFIR(const Fortran::parser::SyncMemoryStmt &stmt) { genSyncMemoryStatement(*this, stmt); } void genFIR(const Fortran::parser::SyncTeamStmt &stmt) { genSyncTeamStatement(*this, stmt); } void genFIR(const Fortran::parser::UnlockStmt &stmt) { genUnlockStatement(*this, stmt); } void genFIR(const Fortran::parser::AssignStmt &stmt) { const Fortran::semantics::Symbol &symbol = *std::get(stmt.t).symbol; mlir::Location loc = toLocation(); mlir::Value labelValue = builder->createIntegerConstant( loc, genType(symbol), std::get(stmt.t)); builder->create(loc, labelValue, getSymbolAddress(symbol)); } void genFIR(const Fortran::parser::FormatStmt &) { // do nothing. // FORMAT statements have no semantics. They may be lowered if used by a // data transfer statement. } void genFIR(const Fortran::parser::PauseStmt &stmt) { genPauseStatement(*this, stmt); } // call FAIL IMAGE in runtime void genFIR(const Fortran::parser::FailImageStmt &stmt) { genFailImageStatement(*this); } // call STOP, ERROR STOP in runtime void genFIR(const Fortran::parser::StopStmt &stmt) { genStopStatement(*this, stmt); } void genFIR(const Fortran::parser::ReturnStmt &stmt) { Fortran::lower::pft::FunctionLikeUnit *funit = getEval().getOwningProcedure(); assert(funit && "not inside main program, function or subroutine"); if (funit->isMainProgram()) { genExitRoutine(); return; } mlir::Location loc = toLocation(); if (stmt.v) { // Alternate return statement - If this is a subroutine where some // alternate entries have alternate returns, but the active entry point // does not, ignore the alternate return value. Otherwise, assign it // to the compiler-generated result variable. const Fortran::semantics::Symbol &symbol = funit->getSubprogramSymbol(); if (Fortran::semantics::HasAlternateReturns(symbol)) { Fortran::lower::StatementContext stmtCtx; const Fortran::lower::SomeExpr *expr = Fortran::semantics::GetExpr(*stmt.v); assert(expr && "missing alternate return expression"); mlir::Value altReturnIndex = builder->createConvert( loc, builder->getIndexType(), createFIRExpr(loc, expr, stmtCtx)); builder->create(loc, altReturnIndex, getAltReturnResult(symbol)); } } // Branch to the last block of the SUBROUTINE, which has the actual return. if (!funit->finalBlock) { mlir::OpBuilder::InsertPoint insPt = builder->saveInsertionPoint(); funit->finalBlock = builder->createBlock(&builder->getRegion()); builder->restoreInsertionPoint(insPt); } builder->create(loc, funit->finalBlock); } void genFIR(const Fortran::parser::CycleStmt &) { genFIRBranch(getEval().controlSuccessor->block); } void genFIR(const Fortran::parser::ExitStmt &) { genFIRBranch(getEval().controlSuccessor->block); } void genFIR(const Fortran::parser::GotoStmt &) { genFIRBranch(getEval().controlSuccessor->block); } // Nop statements - No code, or code is generated at the construct level. // But note that the genFIR call immediately below that wraps one of these // calls does block management, possibly starting a new block, and possibly // generating a branch to end a block. So these calls may still be required // for that functionality. void genFIR(const Fortran::parser::AssociateStmt &) {} // nop void genFIR(const Fortran::parser::CaseStmt &) {} // nop void genFIR(const Fortran::parser::ContinueStmt &) {} // nop void genFIR(const Fortran::parser::ElseIfStmt &) {} // nop void genFIR(const Fortran::parser::ElseStmt &) {} // nop void genFIR(const Fortran::parser::EndAssociateStmt &) {} // nop void genFIR(const Fortran::parser::EndDoStmt &) {} // nop void genFIR(const Fortran::parser::EndFunctionStmt &) {} // nop void genFIR(const Fortran::parser::EndIfStmt &) {} // nop void genFIR(const Fortran::parser::EndMpSubprogramStmt &) {} // nop void genFIR(const Fortran::parser::EndSelectStmt &) {} // nop void genFIR(const Fortran::parser::EndSubroutineStmt &) {} // nop void genFIR(const Fortran::parser::EntryStmt &) {} // nop void genFIR(const Fortran::parser::IfStmt &) {} // nop void genFIR(const Fortran::parser::IfThenStmt &) {} // nop void genFIR(const Fortran::parser::NonLabelDoStmt &) {} // nop void genFIR(const Fortran::parser::OmpEndLoopDirective &) {} // nop void genFIR(const Fortran::parser::SelectTypeStmt &) {} // nop void genFIR(const Fortran::parser::TypeGuardStmt &) {} // nop /// Generate FIR for Evaluation \p eval. void genFIR(Fortran::lower::pft::Evaluation &eval, bool unstructuredContext = true) { // Start a new unstructured block when applicable. When transitioning // from unstructured to structured code, unstructuredContext is true, // which accounts for the possibility that the structured code could be // a target that starts a new block. if (unstructuredContext) maybeStartBlock(eval.isConstruct() && eval.lowerAsStructured() ? eval.getFirstNestedEvaluation().block : eval.block); // Generate evaluation specific code. Even nop calls should usually reach // here in case they start a new block or require generation of a generic // end-of-block branch. An alternative is to add special case code // elsewhere, such as in the genFIR code for a parent construct. setCurrentEval(eval); setCurrentPosition(eval.position); eval.visit([&](const auto &stmt) { genFIR(stmt); }); // Generate an end-of-block branch for several special cases. For // constructs, this can be done for either the end construct statement, // or for the construct itself, which will skip this code if the // end statement was visited first and generated a branch. Fortran::lower::pft::Evaluation *successor = eval.isConstruct() ? eval.getLastNestedEvaluation().lexicalSuccessor : eval.lexicalSuccessor; if (successor && blockIsUnterminated()) { if (successor->isIntermediateConstructStmt() && successor->parentConstruct->lowerAsUnstructured()) // Exit from an intermediate unstructured IF or SELECT construct block. genFIRBranch(successor->parentConstruct->constructExit->block); else if (unstructuredContext && eval.isConstructStmt() && successor == eval.controlSuccessor) // Exit from a degenerate, empty construct block. genFIRBranch(eval.parentConstruct->constructExit->block); } } void mapCPtrArgByValue(const Fortran::semantics::Symbol &sym, mlir::Value val) { mlir::Type symTy = Fortran::lower::translateSymbolToFIRType(*this, sym); mlir::Location loc = toLocation(); mlir::Value res = builder->create(loc, symTy); mlir::Value resAddr = fir::factory::genCPtrOrCFunptrAddr(*builder, loc, res, symTy); mlir::Value argAddrVal = builder->createConvert(loc, fir::unwrapRefType(resAddr.getType()), val); builder->create(loc, argAddrVal, resAddr); addSymbol(sym, res); } void mapTrivialByValue(const Fortran::semantics::Symbol &sym, mlir::Value val) { mlir::Location loc = toLocation(); mlir::Value res = builder->create(loc, val.getType()); builder->create(loc, val, res); addSymbol(sym, res); } /// Map mlir function block arguments to the corresponding Fortran dummy /// variables. When the result is passed as a hidden argument, the Fortran /// result is also mapped. The symbol map is used to hold this mapping. void mapDummiesAndResults(Fortran::lower::pft::FunctionLikeUnit &funit, const Fortran::lower::CalleeInterface &callee) { assert(builder && "require a builder object at this point"); using PassBy = Fortran::lower::CalleeInterface::PassEntityBy; auto mapPassedEntity = [&](const auto arg) { if (arg.passBy == PassBy::AddressAndLength) { if (callee.characterize().IsBindC()) return; // TODO: now that fir call has some attributes regarding character // return, PassBy::AddressAndLength should be retired. mlir::Location loc = toLocation(); fir::factory::CharacterExprHelper charHelp{*builder, loc}; mlir::Value box = charHelp.createEmboxChar(arg.firArgument, arg.firLength); addSymbol(arg.entity->get(), box); } else { if (arg.entity.has_value()) { if (arg.passBy == PassBy::Value) { mlir::Type argTy = arg.firArgument.getType(); if (argTy.isa()) TODO(toLocation(), "derived type argument passed by value"); if (Fortran::semantics::IsBuiltinCPtr(arg.entity->get()) && Fortran::lower::isCPtrArgByValueType(argTy)) { mapCPtrArgByValue(arg.entity->get(), arg.firArgument); return; } if (fir::isa_trivial(argTy)) { mapTrivialByValue(arg.entity->get(), arg.firArgument); return; } } addSymbol(arg.entity->get(), arg.firArgument); } else { assert(funit.parentHasTupleHostAssoc() && "expect tuple argument"); } } }; for (const Fortran::lower::CalleeInterface::PassedEntity &arg : callee.getPassedArguments()) mapPassedEntity(arg); if (std::optional passedResult = callee.getPassedResult()) { mapPassedEntity(*passedResult); // FIXME: need to make sure things are OK here. addSymbol may not be OK if (funit.primaryResult && passedResult->entity->get() != *funit.primaryResult) addSymbol(*funit.primaryResult, getSymbolAddress(passedResult->entity->get())); } } /// Instantiate variable \p var and add it to the symbol map. /// See ConvertVariable.cpp. void instantiateVar(const Fortran::lower::pft::Variable &var, Fortran::lower::AggregateStoreMap &storeMap) { Fortran::lower::instantiateVariable(*this, var, localSymbols, storeMap); if (var.hasSymbol() && var.getSymbol().test( Fortran::semantics::Symbol::Flag::OmpThreadprivate)) Fortran::lower::genThreadprivateOp(*this, var); } /// Start translation of a function. void startNewFunction(Fortran::lower::pft::FunctionLikeUnit &funit) { assert(!builder && "expected nullptr"); const Fortran::semantics::Scope &scope = funit.getScope(); LLVM_DEBUG(llvm::dbgs() << "\n[bridge - startNewFunction]"; if (auto *sym = scope.symbol()) llvm::dbgs() << " " << *sym; llvm::dbgs() << "\n"); Fortran::lower::CalleeInterface callee(funit, *this); mlir::func::FuncOp func = callee.addEntryBlockAndMapArguments(); builder = new fir::FirOpBuilder(func, bridge.getKindMap()); assert(builder && "FirOpBuilder did not instantiate"); builder->setFastMathFlags(bridge.getLoweringOptions().getMathOptions()); builder->setInsertionPointToStart(&func.front()); func.setVisibility(mlir::SymbolTable::Visibility::Public); mapDummiesAndResults(funit, callee); // Map host associated symbols from parent procedure if any. if (funit.parentHasHostAssoc()) funit.parentHostAssoc().internalProcedureBindings(*this, localSymbols); // Non-primary results of a function with multiple entry points. // These result values share storage with the primary result. llvm::SmallVector deferredFuncResultList; // Backup actual argument for entry character results with different // lengths. It needs to be added to the non-primary results symbol before // mapSymbolAttributes is called. Fortran::lower::SymbolBox resultArg; if (std::optional passedResult = callee.getPassedResult()) resultArg = lookupSymbol(passedResult->entity->get()); Fortran::lower::AggregateStoreMap storeMap; // Map all containing submodule and module equivalences and variables, in // case they are referenced. It might be better to limit this to variables // that are actually referenced, although that is more complicated when // there are equivalenced variables. auto &scopeVariableListMap = Fortran::lower::pft::getScopeVariableListMap(funit); for (auto *scp = &scope.parent(); !scp->IsGlobal(); scp = &scp->parent()) if (scp->kind() == Fortran::semantics::Scope::Kind::Module) for (const auto &var : Fortran::lower::pft::getScopeVariableList( *scp, scopeVariableListMap)) instantiateVar(var, storeMap); // Map function equivalences and variables. mlir::Value primaryFuncResultStorage; for (const Fortran::lower::pft::Variable &var : Fortran::lower::pft::getScopeVariableList(scope)) { // Always instantiate aggregate storage blocks. if (var.isAggregateStore()) { instantiateVar(var, storeMap); continue; } const Fortran::semantics::Symbol &sym = var.getSymbol(); if (funit.parentHasHostAssoc()) { // Never instantiate host associated variables, as they are already // instantiated from an argument tuple. Instead, just bind the symbol // to the host variable, which must be in the map. const Fortran::semantics::Symbol &ultimate = sym.GetUltimate(); if (funit.parentHostAssoc().isAssociated(ultimate)) { copySymbolBinding(ultimate, sym); continue; } } if (!sym.IsFuncResult() || !funit.primaryResult) { instantiateVar(var, storeMap); } else if (&sym == funit.primaryResult) { instantiateVar(var, storeMap); primaryFuncResultStorage = getSymbolAddress(sym); } else { deferredFuncResultList.push_back(var); } } // TODO: should use same mechanism as equivalence? // One blocking point is character entry returns that need special handling // since they are not locally allocated but come as argument. CHARACTER(*) // is not something that fits well with equivalence lowering. for (const Fortran::lower::pft::Variable &altResult : deferredFuncResultList) { Fortran::lower::StatementContext stmtCtx; if (std::optional passedResult = callee.getPassedResult()) { addSymbol(altResult.getSymbol(), resultArg.getAddr()); Fortran::lower::mapSymbolAttributes(*this, altResult, localSymbols, stmtCtx); } else { Fortran::lower::mapSymbolAttributes(*this, altResult, localSymbols, stmtCtx, primaryFuncResultStorage); } } // If this is a host procedure with host associations, then create the tuple // of pointers for passing to the internal procedures. if (!funit.getHostAssoc().empty()) funit.getHostAssoc().hostProcedureBindings(*this, localSymbols); // Create most function blocks in advance. createEmptyBlocks(funit.evaluationList); // Reinstate entry block as the current insertion point. builder->setInsertionPointToEnd(&func.front()); if (callee.hasAlternateReturns()) { // Create a local temp to hold the alternate return index. // Give it an integer index type and the subroutine name (for dumps). // Attach it to the subroutine symbol in the localSymbols map. // Initialize it to zero, the "fallthrough" alternate return value. const Fortran::semantics::Symbol &symbol = funit.getSubprogramSymbol(); mlir::Location loc = toLocation(); mlir::Type idxTy = builder->getIndexType(); mlir::Value altResult = builder->createTemporary(loc, idxTy, toStringRef(symbol.name())); addSymbol(symbol, altResult); mlir::Value zero = builder->createIntegerConstant(loc, idxTy, 0); builder->create(loc, zero, altResult); } if (Fortran::lower::pft::Evaluation *alternateEntryEval = funit.getEntryEval()) genFIRBranch(alternateEntryEval->lexicalSuccessor->block); } /// Create global blocks for the current function. This eliminates the /// distinction between forward and backward targets when generating /// branches. A block is "global" if it can be the target of a GOTO or /// other source code branch. A block that can only be targeted by a /// compiler generated branch is "local". For example, a DO loop preheader /// block containing loop initialization code is global. A loop header /// block, which is the target of the loop back edge, is local. Blocks /// belong to a region. Any block within a nested region must be replaced /// with a block belonging to that region. Branches may not cross region /// boundaries. void createEmptyBlocks( std::list &evaluationList) { mlir::Region *region = &builder->getRegion(); for (Fortran::lower::pft::Evaluation &eval : evaluationList) { if (eval.isNewBlock) eval.block = builder->createBlock(region); if (eval.isConstruct() || eval.isDirective()) { if (eval.lowerAsUnstructured()) { createEmptyBlocks(eval.getNestedEvaluations()); } else if (eval.hasNestedEvaluations()) { // A structured construct that is a target starts a new block. Fortran::lower::pft::Evaluation &constructStmt = eval.getFirstNestedEvaluation(); if (constructStmt.isNewBlock) constructStmt.block = builder->createBlock(region); } } } } /// Return the predicate: "current block does not have a terminator branch". bool blockIsUnterminated() { mlir::Block *currentBlock = builder->getBlock(); return currentBlock->empty() || !currentBlock->back().hasTrait(); } /// Unconditionally switch code insertion to a new block. void startBlock(mlir::Block *newBlock) { assert(newBlock && "missing block"); // Default termination for the current block is a fallthrough branch to // the new block. if (blockIsUnterminated()) genFIRBranch(newBlock); // Some blocks may be re/started more than once, and might not be empty. // If the new block already has (only) a terminator, set the insertion // point to the start of the block. Otherwise set it to the end. builder->setInsertionPointToStart(newBlock); if (blockIsUnterminated()) builder->setInsertionPointToEnd(newBlock); } /// Conditionally switch code insertion to a new block. void maybeStartBlock(mlir::Block *newBlock) { if (newBlock) startBlock(newBlock); } /// Finish translation of a function. void endNewFunction(Fortran::lower::pft::FunctionLikeUnit &funit) { setCurrentPosition(Fortran::lower::pft::stmtSourceLoc(funit.endStmt)); if (funit.isMainProgram()) genExitRoutine(); else genFIRProcedureExit(funit, funit.getSubprogramSymbol()); funit.finalBlock = nullptr; LLVM_DEBUG(llvm::dbgs() << "\n[bridge - endNewFunction"; if (auto *sym = funit.scope->symbol()) llvm::dbgs() << " " << sym->name(); llvm::dbgs() << "] generated IR:\n\n" << *builder->getFunction() << '\n'); // Eliminate dead code as a prerequisite to calling other IR passes. // FIXME: This simplification should happen in a normal pass, not here. mlir::IRRewriter rewriter(*builder); (void)mlir::simplifyRegions(rewriter, {builder->getRegion()}); delete builder; builder = nullptr; hostAssocTuple = mlir::Value{}; localSymbols.clear(); } /// Helper to generate GlobalOps when the builder is not positioned in any /// region block. This is required because the FirOpBuilder assumes it is /// always positioned inside a region block when creating globals, the easiest /// way comply is to create a dummy function and to throw it afterwards. void createGlobalOutsideOfFunctionLowering( const std::function &createGlobals) { // FIXME: get rid of the bogus function context and instantiate the // globals directly into the module. mlir::MLIRContext *context = &getMLIRContext(); mlir::func::FuncOp func = fir::FirOpBuilder::createFunction( mlir::UnknownLoc::get(context), getModuleOp(), fir::NameUniquer::doGenerated("Sham"), mlir::FunctionType::get(context, std::nullopt, std::nullopt)); func.addEntryBlock(); builder = new fir::FirOpBuilder(func, bridge.getKindMap()); assert(builder && "FirOpBuilder did not instantiate"); builder->setFastMathFlags(bridge.getLoweringOptions().getMathOptions()); createGlobals(); if (mlir::Region *region = func.getCallableRegion()) region->dropAllReferences(); func.erase(); delete builder; builder = nullptr; localSymbols.clear(); } /// Instantiate the data from a BLOCK DATA unit. void lowerBlockData(Fortran::lower::pft::BlockDataUnit &bdunit) { createGlobalOutsideOfFunctionLowering([&]() { Fortran::lower::AggregateStoreMap fakeMap; for (const auto &[_, sym] : bdunit.symTab) { if (sym->has()) { Fortran::lower::pft::Variable var(*sym, true); instantiateVar(var, fakeMap); } } }); } /// Create fir::Global for all the common blocks that appear in the program. void lowerCommonBlocks(const Fortran::semantics::CommonBlockList &commonBlocks) { createGlobalOutsideOfFunctionLowering( [&]() { Fortran::lower::defineCommonBlocks(*this, commonBlocks); }); } /// Lower a procedure (nest). void lowerFunc(Fortran::lower::pft::FunctionLikeUnit &funit) { setCurrentPosition(funit.getStartingSourceLoc()); for (int entryIndex = 0, last = funit.entryPointList.size(); entryIndex < last; ++entryIndex) { funit.setActiveEntry(entryIndex); startNewFunction(funit); // the entry point for lowering this procedure for (Fortran::lower::pft::Evaluation &eval : funit.evaluationList) genFIR(eval); endNewFunction(funit); } funit.setActiveEntry(0); for (Fortran::lower::pft::FunctionLikeUnit &f : funit.nestedFunctions) lowerFunc(f); // internal procedure } /// Lower module variable definitions to fir::globalOp and OpenMP/OpenACC /// declarative construct. void lowerModuleDeclScope(Fortran::lower::pft::ModuleLikeUnit &mod) { setCurrentPosition(mod.getStartingSourceLoc()); createGlobalOutsideOfFunctionLowering([&]() { auto &scopeVariableListMap = Fortran::lower::pft::getScopeVariableListMap(mod); for (const auto &var : Fortran::lower::pft::getScopeVariableList( mod.getScope(), scopeVariableListMap)) { // Only define the variables owned by this module. const Fortran::semantics::Scope *owningScope = var.getOwningScope(); if (!owningScope || mod.getScope() == *owningScope) Fortran::lower::defineModuleVariable(*this, var); } for (auto &eval : mod.evaluationList) genFIR(eval); }); } /// Lower functions contained in a module. void lowerMod(Fortran::lower::pft::ModuleLikeUnit &mod) { for (Fortran::lower::pft::FunctionLikeUnit &f : mod.nestedFunctions) lowerFunc(f); } void setCurrentPosition(const Fortran::parser::CharBlock &position) { if (position != Fortran::parser::CharBlock{}) currentPosition = position; } /// Set current position at the location of \p parseTreeNode. Note that the /// position is updated automatically when visiting statements, but not when /// entering higher level nodes like constructs or procedures. This helper is /// intended to cover the latter cases. template void setCurrentPositionAt(const A &parseTreeNode) { setCurrentPosition(Fortran::parser::FindSourceLocation(parseTreeNode)); } //===--------------------------------------------------------------------===// // Utility methods //===--------------------------------------------------------------------===// /// Convert a parser CharBlock to a Location mlir::Location toLocation(const Fortran::parser::CharBlock &cb) { return genLocation(cb); } mlir::Location toLocation() { return toLocation(currentPosition); } void setCurrentEval(Fortran::lower::pft::Evaluation &eval) { evalPtr = &eval; } Fortran::lower::pft::Evaluation &getEval() { assert(evalPtr); return *evalPtr; } std::optional getShape(const Fortran::lower::SomeExpr &expr) { return Fortran::evaluate::GetShape(foldingContext, expr); } //===--------------------------------------------------------------------===// // Analysis on a nested explicit iteration space. //===--------------------------------------------------------------------===// void analyzeExplicitSpace(const Fortran::parser::ConcurrentHeader &header) { explicitIterSpace.pushLevel(); for (const Fortran::parser::ConcurrentControl &ctrl : std::get>(header.t)) { const Fortran::semantics::Symbol *ctrlVar = std::get(ctrl.t).symbol; explicitIterSpace.addSymbol(ctrlVar); } if (const auto &mask = std::get>( header.t); mask.has_value()) analyzeExplicitSpace(*Fortran::semantics::GetExpr(*mask)); } template void analyzeExplicitSpace(const Fortran::evaluate::Expr &e) { explicitIterSpace.exprBase(&e, LHS); } void analyzeExplicitSpace(const Fortran::evaluate::Assignment *assign) { auto analyzeAssign = [&](const Fortran::lower::SomeExpr &lhs, const Fortran::lower::SomeExpr &rhs) { analyzeExplicitSpace(lhs); analyzeExplicitSpace(rhs); }; std::visit( Fortran::common::visitors{ [&](const Fortran::evaluate::ProcedureRef &procRef) { // Ensure the procRef expressions are the one being visited. assert(procRef.arguments().size() == 2); const Fortran::lower::SomeExpr *lhs = procRef.arguments()[0].value().UnwrapExpr(); const Fortran::lower::SomeExpr *rhs = procRef.arguments()[1].value().UnwrapExpr(); assert(lhs && rhs && "user defined assignment arguments must be expressions"); analyzeAssign(*lhs, *rhs); }, [&](const auto &) { analyzeAssign(assign->lhs, assign->rhs); }}, assign->u); explicitIterSpace.endAssign(); } void analyzeExplicitSpace(const Fortran::parser::ForallAssignmentStmt &stmt) { std::visit([&](const auto &s) { analyzeExplicitSpace(s); }, stmt.u); } void analyzeExplicitSpace(const Fortran::parser::AssignmentStmt &s) { analyzeExplicitSpace(s.typedAssignment->v.operator->()); } void analyzeExplicitSpace(const Fortran::parser::PointerAssignmentStmt &s) { analyzeExplicitSpace(s.typedAssignment->v.operator->()); } void analyzeExplicitSpace(const Fortran::parser::WhereConstruct &c) { analyzeExplicitSpace( std::get< Fortran::parser::Statement>( c.t) .statement); for (const Fortran::parser::WhereBodyConstruct &body : std::get>(c.t)) analyzeExplicitSpace(body); for (const Fortran::parser::WhereConstruct::MaskedElsewhere &e : std::get>( c.t)) analyzeExplicitSpace(e); if (const auto &e = std::get>( c.t); e.has_value()) analyzeExplicitSpace(e.operator->()); } void analyzeExplicitSpace(const Fortran::parser::WhereConstructStmt &ws) { const Fortran::lower::SomeExpr *exp = Fortran::semantics::GetExpr( std::get(ws.t)); addMaskVariable(exp); analyzeExplicitSpace(*exp); } void analyzeExplicitSpace( const Fortran::parser::WhereConstruct::MaskedElsewhere &ew) { analyzeExplicitSpace( std::get< Fortran::parser::Statement>( ew.t) .statement); for (const Fortran::parser::WhereBodyConstruct &e : std::get>(ew.t)) analyzeExplicitSpace(e); } void analyzeExplicitSpace(const Fortran::parser::WhereBodyConstruct &body) { std::visit(Fortran::common::visitors{ [&](const Fortran::common::Indirection< Fortran::parser::WhereConstruct> &wc) { analyzeExplicitSpace(wc.value()); }, [&](const auto &s) { analyzeExplicitSpace(s.statement); }}, body.u); } void analyzeExplicitSpace(const Fortran::parser::MaskedElsewhereStmt &stmt) { const Fortran::lower::SomeExpr *exp = Fortran::semantics::GetExpr( std::get(stmt.t)); addMaskVariable(exp); analyzeExplicitSpace(*exp); } void analyzeExplicitSpace(const Fortran::parser::WhereConstruct::Elsewhere *ew) { for (const Fortran::parser::WhereBodyConstruct &e : std::get>(ew->t)) analyzeExplicitSpace(e); } void analyzeExplicitSpace(const Fortran::parser::WhereStmt &stmt) { const Fortran::lower::SomeExpr *exp = Fortran::semantics::GetExpr( std::get(stmt.t)); addMaskVariable(exp); analyzeExplicitSpace(*exp); const std::optional &assign = std::get(stmt.t).typedAssignment->v; assert(assign.has_value() && "WHERE has no statement"); analyzeExplicitSpace(assign.operator->()); } void analyzeExplicitSpace(const Fortran::parser::ForallStmt &forall) { analyzeExplicitSpace( std::get< Fortran::common::Indirection>( forall.t) .value()); analyzeExplicitSpace(std::get>(forall.t) .statement); analyzeExplicitSpacePop(); } void analyzeExplicitSpace(const Fortran::parser::ForallConstructStmt &forall) { analyzeExplicitSpace( std::get< Fortran::common::Indirection>( forall.t) .value()); } void analyzeExplicitSpace(const Fortran::parser::ForallConstruct &forall) { analyzeExplicitSpace( std::get< Fortran::parser::Statement>( forall.t) .statement); for (const Fortran::parser::ForallBodyConstruct &s : std::get>(forall.t)) { std::visit(Fortran::common::visitors{ [&](const Fortran::common::Indirection< Fortran::parser::ForallConstruct> &b) { analyzeExplicitSpace(b.value()); }, [&](const Fortran::parser::WhereConstruct &w) { analyzeExplicitSpace(w); }, [&](const auto &b) { analyzeExplicitSpace(b.statement); }}, s.u); } analyzeExplicitSpacePop(); } void analyzeExplicitSpacePop() { explicitIterSpace.popLevel(); } void addMaskVariable(Fortran::lower::FrontEndExpr exp) { // Note: use i8 to store bool values. This avoids round-down behavior found // with sequences of i1. That is, an array of i1 will be truncated in size // and be too small. For example, a buffer of type fir.array<7xi1> will have // 0 size. mlir::Type i64Ty = builder->getIntegerType(64); mlir::TupleType ty = fir::factory::getRaggedArrayHeaderType(*builder); mlir::Type buffTy = ty.getType(1); mlir::Type shTy = ty.getType(2); mlir::Location loc = toLocation(); mlir::Value hdr = builder->createTemporary(loc, ty); // FIXME: Is there a way to create a `zeroinitializer` in LLVM-IR dialect? // For now, explicitly set lazy ragged header to all zeros. // auto nilTup = builder->createNullConstant(loc, ty); // builder->create(loc, nilTup, hdr); mlir::Type i32Ty = builder->getIntegerType(32); mlir::Value zero = builder->createIntegerConstant(loc, i32Ty, 0); mlir::Value zero64 = builder->createIntegerConstant(loc, i64Ty, 0); mlir::Value flags = builder->create( loc, builder->getRefType(i64Ty), hdr, zero); builder->create(loc, zero64, flags); mlir::Value one = builder->createIntegerConstant(loc, i32Ty, 1); mlir::Value nullPtr1 = builder->createNullConstant(loc, buffTy); mlir::Value var = builder->create( loc, builder->getRefType(buffTy), hdr, one); builder->create(loc, nullPtr1, var); mlir::Value two = builder->createIntegerConstant(loc, i32Ty, 2); mlir::Value nullPtr2 = builder->createNullConstant(loc, shTy); mlir::Value shape = builder->create( loc, builder->getRefType(shTy), hdr, two); builder->create(loc, nullPtr2, shape); implicitIterSpace.addMaskVariable(exp, var, shape, hdr); explicitIterSpace.outermostContext().attachCleanup( [builder = this->builder, hdr, loc]() { fir::runtime::genRaggedArrayDeallocate(loc, *builder, hdr); }); } void createRuntimeTypeInfoGlobals() {} //===--------------------------------------------------------------------===// Fortran::lower::LoweringBridge &bridge; Fortran::evaluate::FoldingContext foldingContext; fir::FirOpBuilder *builder = nullptr; Fortran::lower::pft::Evaluation *evalPtr = nullptr; Fortran::lower::SymMap localSymbols; Fortran::parser::CharBlock currentPosition; RuntimeTypeInfoConverter runtimeTypeInfoConverter; DispatchTableConverter dispatchTableConverter; /// WHERE statement/construct mask expression stack. Fortran::lower::ImplicitIterSpace implicitIterSpace; /// FORALL context Fortran::lower::ExplicitIterSpace explicitIterSpace; /// Tuple of host assoicated variables. mlir::Value hostAssocTuple; }; } // namespace Fortran::evaluate::FoldingContext Fortran::lower::LoweringBridge::createFoldingContext() const { return {getDefaultKinds(), getIntrinsicTable(), getTargetCharacteristics()}; } void Fortran::lower::LoweringBridge::lower( const Fortran::parser::Program &prg, const Fortran::semantics::SemanticsContext &semanticsContext) { std::unique_ptr pft = Fortran::lower::createPFT(prg, semanticsContext); if (dumpBeforeFir) Fortran::lower::dumpPFT(llvm::errs(), *pft); FirConverter converter{*this}; converter.run(*pft); } void Fortran::lower::LoweringBridge::parseSourceFile(llvm::SourceMgr &srcMgr) { mlir::OwningOpRef owningRef = mlir::parseSourceFile(srcMgr, &context); module.reset(new mlir::ModuleOp(owningRef.get().getOperation())); owningRef.release(); } Fortran::lower::LoweringBridge::LoweringBridge( mlir::MLIRContext &context, Fortran::semantics::SemanticsContext &semanticsContext, const Fortran::common::IntrinsicTypeDefaultKinds &defaultKinds, const Fortran::evaluate::IntrinsicProcTable &intrinsics, const Fortran::evaluate::TargetCharacteristics &targetCharacteristics, const Fortran::parser::AllCookedSources &cooked, llvm::StringRef triple, fir::KindMapping &kindMap, const Fortran::lower::LoweringOptions &loweringOptions, const std::vector &envDefaults) : semanticsContext{semanticsContext}, defaultKinds{defaultKinds}, intrinsics{intrinsics}, targetCharacteristics{targetCharacteristics}, cooked{&cooked}, context{context}, kindMap{kindMap}, loweringOptions{loweringOptions}, envDefaults{envDefaults} { // Register the diagnostic handler. context.getDiagEngine().registerHandler([](mlir::Diagnostic &diag) { llvm::raw_ostream &os = llvm::errs(); switch (diag.getSeverity()) { case mlir::DiagnosticSeverity::Error: os << "error: "; break; case mlir::DiagnosticSeverity::Remark: os << "info: "; break; case mlir::DiagnosticSeverity::Warning: os << "warning: "; break; default: break; } if (!diag.getLocation().isa()) os << diag.getLocation() << ": "; os << diag << '\n'; os.flush(); return mlir::success(); }); // Create the module and attach the attributes. module = std::make_unique( mlir::ModuleOp::create(mlir::UnknownLoc::get(&context))); assert(module.get() && "module was not created"); fir::setTargetTriple(*module.get(), triple); fir::setKindMapping(*module.get(), kindMap); }