//===-- ControlFlowConverter.cpp ------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "flang/Optimizer/Dialect/FIRDialect.h" #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Dialect/FIROpsSupport.h" #include "flang/Optimizer/Support/FIRContext.h" #include "flang/Optimizer/Support/InternalNames.h" #include "flang/Optimizer/Support/KindMapping.h" #include "flang/Optimizer/Support/TypeCode.h" #include "flang/Optimizer/Transforms/Passes.h" #include "flang/Runtime/derived-api.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Pass/Pass.h" #include "mlir/Transforms/DialectConversion.h" #include "llvm/ADT/SmallSet.h" #include "llvm/Support/CommandLine.h" #include namespace fir { #define GEN_PASS_DEF_CFGCONVERSION #include "flang/Optimizer/Transforms/Passes.h.inc" } // namespace fir using namespace fir; using namespace mlir; namespace { // Conversion of fir control ops to more primitive control-flow. // // FIR loops that cannot be converted to the affine dialect will remain as // `fir.do_loop` operations. These can be converted to control-flow operations. /// Convert `fir.do_loop` to CFG class CfgLoopConv : public mlir::OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; CfgLoopConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce) : mlir::OpRewritePattern(ctx), forceLoopToExecuteOnce(forceLoopToExecuteOnce) {} mlir::LogicalResult matchAndRewrite(DoLoopOp loop, mlir::PatternRewriter &rewriter) const override { auto loc = loop.getLoc(); // Create the start and end blocks that will wrap the DoLoopOp with an // initalizer and an end point auto *initBlock = rewriter.getInsertionBlock(); auto initPos = rewriter.getInsertionPoint(); auto *endBlock = rewriter.splitBlock(initBlock, initPos); // Split the first DoLoopOp block in two parts. The part before will be the // conditional block since it already has the induction variable and // loop-carried values as arguments. auto *conditionalBlock = &loop.getRegion().front(); conditionalBlock->addArgument(rewriter.getIndexType(), loc); auto *firstBlock = rewriter.splitBlock(conditionalBlock, conditionalBlock->begin()); auto *lastBlock = &loop.getRegion().back(); // Move the blocks from the DoLoopOp between initBlock and endBlock rewriter.inlineRegionBefore(loop.getRegion(), endBlock); // Get loop values from the DoLoopOp auto low = loop.getLowerBound(); auto high = loop.getUpperBound(); assert(low && high && "must be a Value"); auto step = loop.getStep(); // Initalization block rewriter.setInsertionPointToEnd(initBlock); auto diff = rewriter.create(loc, high, low); auto distance = rewriter.create(loc, diff, step); mlir::Value iters = rewriter.create(loc, distance, step); if (forceLoopToExecuteOnce) { auto zero = rewriter.create(loc, 0); auto cond = rewriter.create( loc, arith::CmpIPredicate::sle, iters, zero); auto one = rewriter.create(loc, 1); iters = rewriter.create(loc, cond, one, iters); } llvm::SmallVector loopOperands; loopOperands.push_back(low); auto operands = loop.getIterOperands(); loopOperands.append(operands.begin(), operands.end()); loopOperands.push_back(iters); rewriter.create(loc, conditionalBlock, loopOperands); // Last loop block auto *terminator = lastBlock->getTerminator(); rewriter.setInsertionPointToEnd(lastBlock); auto iv = conditionalBlock->getArgument(0); mlir::Value steppedIndex = rewriter.create(loc, iv, step); assert(steppedIndex && "must be a Value"); auto lastArg = conditionalBlock->getNumArguments() - 1; auto itersLeft = conditionalBlock->getArgument(lastArg); auto one = rewriter.create(loc, 1); mlir::Value itersMinusOne = rewriter.create(loc, itersLeft, one); llvm::SmallVector loopCarried; loopCarried.push_back(steppedIndex); auto begin = loop.getFinalValue() ? std::next(terminator->operand_begin()) : terminator->operand_begin(); loopCarried.append(begin, terminator->operand_end()); loopCarried.push_back(itersMinusOne); rewriter.create(loc, conditionalBlock, loopCarried); rewriter.eraseOp(terminator); // Conditional block rewriter.setInsertionPointToEnd(conditionalBlock); auto zero = rewriter.create(loc, 0); auto comparison = rewriter.create( loc, arith::CmpIPredicate::sgt, itersLeft, zero); rewriter.create( loc, comparison, firstBlock, llvm::ArrayRef(), endBlock, llvm::ArrayRef()); // The result of the loop operation is the values of the condition block // arguments except the induction variable on the last iteration. auto args = loop.getFinalValue() ? conditionalBlock->getArguments() : conditionalBlock->getArguments().drop_front(); rewriter.replaceOp(loop, args.drop_back()); return success(); } private: bool forceLoopToExecuteOnce; }; /// Convert `fir.if` to control-flow class CfgIfConv : public mlir::OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; CfgIfConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce) : mlir::OpRewritePattern(ctx) {} mlir::LogicalResult matchAndRewrite(IfOp ifOp, mlir::PatternRewriter &rewriter) const override { auto loc = ifOp.getLoc(); // Split the block containing the 'fir.if' into two parts. The part before // will contain the condition, the part after will be the continuation // point. auto *condBlock = rewriter.getInsertionBlock(); auto opPosition = rewriter.getInsertionPoint(); auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition); mlir::Block *continueBlock; if (ifOp.getNumResults() == 0) { continueBlock = remainingOpsBlock; } else { continueBlock = rewriter.createBlock( remainingOpsBlock, ifOp.getResultTypes(), llvm::SmallVector(ifOp.getNumResults(), loc)); rewriter.create(loc, remainingOpsBlock); } // Move blocks from the "then" region to the region containing 'fir.if', // place it before the continuation block, and branch to it. auto &ifOpRegion = ifOp.getThenRegion(); auto *ifOpBlock = &ifOpRegion.front(); auto *ifOpTerminator = ifOpRegion.back().getTerminator(); auto ifOpTerminatorOperands = ifOpTerminator->getOperands(); rewriter.setInsertionPointToEnd(&ifOpRegion.back()); rewriter.create(loc, continueBlock, ifOpTerminatorOperands); rewriter.eraseOp(ifOpTerminator); rewriter.inlineRegionBefore(ifOpRegion, continueBlock); // Move blocks from the "else" region (if present) to the region containing // 'fir.if', place it before the continuation block and branch to it. It // will be placed after the "then" regions. auto *otherwiseBlock = continueBlock; auto &otherwiseRegion = ifOp.getElseRegion(); if (!otherwiseRegion.empty()) { otherwiseBlock = &otherwiseRegion.front(); auto *otherwiseTerm = otherwiseRegion.back().getTerminator(); auto otherwiseTermOperands = otherwiseTerm->getOperands(); rewriter.setInsertionPointToEnd(&otherwiseRegion.back()); rewriter.create(loc, continueBlock, otherwiseTermOperands); rewriter.eraseOp(otherwiseTerm); rewriter.inlineRegionBefore(otherwiseRegion, continueBlock); } rewriter.setInsertionPointToEnd(condBlock); rewriter.create( loc, ifOp.getCondition(), ifOpBlock, llvm::ArrayRef(), otherwiseBlock, llvm::ArrayRef()); rewriter.replaceOp(ifOp, continueBlock->getArguments()); return success(); } }; /// Convert `fir.iter_while` to control-flow. class CfgIterWhileConv : public mlir::OpRewritePattern { public: using OpRewritePattern::OpRewritePattern; CfgIterWhileConv(mlir::MLIRContext *ctx, bool forceLoopToExecuteOnce) : mlir::OpRewritePattern(ctx) {} mlir::LogicalResult matchAndRewrite(fir::IterWhileOp whileOp, mlir::PatternRewriter &rewriter) const override { auto loc = whileOp.getLoc(); // Start by splitting the block containing the 'fir.do_loop' into two parts. // The part before will get the init code, the part after will be the end // point. auto *initBlock = rewriter.getInsertionBlock(); auto initPosition = rewriter.getInsertionPoint(); auto *endBlock = rewriter.splitBlock(initBlock, initPosition); // Use the first block of the loop body as the condition block since it is // the block that has the induction variable and loop-carried values as // arguments. Split out all operations from the first block into a new // block. Move all body blocks from the loop body region to the region // containing the loop. auto *conditionBlock = &whileOp.getRegion().front(); auto *firstBodyBlock = rewriter.splitBlock(conditionBlock, conditionBlock->begin()); auto *lastBodyBlock = &whileOp.getRegion().back(); rewriter.inlineRegionBefore(whileOp.getRegion(), endBlock); auto iv = conditionBlock->getArgument(0); auto iterateVar = conditionBlock->getArgument(1); // Append the induction variable stepping logic to the last body block and // branch back to the condition block. Loop-carried values are taken from // operands of the loop terminator. auto *terminator = lastBodyBlock->getTerminator(); rewriter.setInsertionPointToEnd(lastBodyBlock); auto step = whileOp.getStep(); mlir::Value stepped = rewriter.create(loc, iv, step); assert(stepped && "must be a Value"); llvm::SmallVector loopCarried; loopCarried.push_back(stepped); auto begin = whileOp.getFinalValue() ? std::next(terminator->operand_begin()) : terminator->operand_begin(); loopCarried.append(begin, terminator->operand_end()); rewriter.create(loc, conditionBlock, loopCarried); rewriter.eraseOp(terminator); // Compute loop bounds before branching to the condition. rewriter.setInsertionPointToEnd(initBlock); auto lowerBound = whileOp.getLowerBound(); auto upperBound = whileOp.getUpperBound(); assert(lowerBound && upperBound && "must be a Value"); // The initial values of loop-carried values is obtained from the operands // of the loop operation. llvm::SmallVector destOperands; destOperands.push_back(lowerBound); auto iterOperands = whileOp.getIterOperands(); destOperands.append(iterOperands.begin(), iterOperands.end()); rewriter.create(loc, conditionBlock, destOperands); // With the body block done, we can fill in the condition block. rewriter.setInsertionPointToEnd(conditionBlock); // The comparison depends on the sign of the step value. We fully expect // this expression to be folded by the optimizer or LLVM. This expression // is written this way so that `step == 0` always returns `false`. auto zero = rewriter.create(loc, 0); auto compl0 = rewriter.create( loc, arith::CmpIPredicate::slt, zero, step); auto compl1 = rewriter.create( loc, arith::CmpIPredicate::sle, iv, upperBound); auto compl2 = rewriter.create( loc, arith::CmpIPredicate::slt, step, zero); auto compl3 = rewriter.create( loc, arith::CmpIPredicate::sle, upperBound, iv); auto cmp0 = rewriter.create(loc, compl0, compl1); auto cmp1 = rewriter.create(loc, compl2, compl3); auto cmp2 = rewriter.create(loc, cmp0, cmp1); // Remember to AND in the early-exit bool. auto comparison = rewriter.create(loc, iterateVar, cmp2); rewriter.create( loc, comparison, firstBodyBlock, llvm::ArrayRef(), endBlock, llvm::ArrayRef()); // The result of the loop operation is the values of the condition block // arguments except the induction variable on the last iteration. auto args = whileOp.getFinalValue() ? conditionBlock->getArguments() : conditionBlock->getArguments().drop_front(); rewriter.replaceOp(whileOp, args); return success(); } }; /// SelectTypeOp converted to an if-then-else chain /// /// This lowers the test conditions to calls into the runtime. class CfgSelectTypeConv : public OpConversionPattern { public: using OpConversionPattern::OpConversionPattern; CfgSelectTypeConv(mlir::MLIRContext *ctx, std::mutex *moduleMutex) : mlir::OpConversionPattern(ctx), moduleMutex(moduleMutex) {} mlir::LogicalResult matchAndRewrite(fir::SelectTypeOp selectType, OpAdaptor adaptor, mlir::ConversionPatternRewriter &rewriter) const override { auto operands = adaptor.getOperands(); auto typeGuards = selectType.getCases(); unsigned typeGuardNum = typeGuards.size(); auto selector = selectType.getSelector(); auto loc = selectType.getLoc(); auto mod = selectType.getOperation()->getParentOfType(); fir::KindMapping kindMap = fir::getKindMapping(mod); // Order type guards so the condition and branches are done to respect the // Execution of SELECT TYPE construct as described in the Fortran 2018 // standard 11.1.11.2 point 4. // 1. If a TYPE IS type guard statement matches the selector, the block // following that statement is executed. // 2. Otherwise, if exactly one CLASS IS type guard statement matches the // selector, the block following that statement is executed. // 3. Otherwise, if several CLASS IS type guard statements match the // selector, one of these statements will inevitably specify a type that // is an extension of all the types specified in the others; the block // following that statement is executed. // 4. Otherwise, if there is a CLASS DEFAULT type guard statement, the block // following that statement is executed. // 5. Otherwise, no block is executed. llvm::SmallVector orderedTypeGuards; llvm::SmallVector orderedClassIsGuards; unsigned defaultGuard = typeGuardNum - 1; // The following loop go through the type guards in the fir.select_type // operation and sort them into two lists. // - All the TYPE IS type guard are added in order to the orderedTypeGuards // list. This list is used at the end to generate the if-then-else ladder. // - CLASS IS type guard are added in a separate list. If a CLASS IS type // guard type extends a type already present, the type guard is inserted // before in the list to respect point 3. above. Otherwise it is just // added in order at the end. for (unsigned t = 0; t < typeGuardNum; ++t) { if (auto a = typeGuards[t].dyn_cast()) { orderedTypeGuards.push_back(t); continue; } if (auto a = typeGuards[t].dyn_cast()) { if (auto recTy = a.getType().dyn_cast()) { auto dt = mod.lookupSymbol(recTy.getName()); assert(dt && "dispatch table not found"); llvm::SmallSet ancestors = collectAncestors(dt, mod); if (!ancestors.empty()) { auto it = orderedClassIsGuards.begin(); while (it != orderedClassIsGuards.end()) { fir::SubclassAttr sAttr = typeGuards[*it].dyn_cast(); if (auto ty = sAttr.getType().dyn_cast()) { if (ancestors.contains(ty.getName())) break; } ++it; } if (it != orderedClassIsGuards.end()) { // Parent type is present so place it before. orderedClassIsGuards.insert(it, t); continue; } } } orderedClassIsGuards.push_back(t); } } orderedTypeGuards.append(orderedClassIsGuards); orderedTypeGuards.push_back(defaultGuard); assert(orderedTypeGuards.size() == typeGuardNum && "ordered type guard size doesn't match number of type guards"); for (unsigned idx : orderedTypeGuards) { auto *dest = selectType.getSuccessor(idx); std::optional destOps = selectType.getSuccessorOperands(operands, idx); if (typeGuards[idx].dyn_cast()) rewriter.replaceOpWithNewOp(selectType, dest); else if (mlir::failed(genTypeLadderStep(loc, selector, typeGuards[idx], dest, destOps, mod, rewriter, kindMap))) return mlir::failure(); } return mlir::success(); } llvm::SmallSet collectAncestors(fir::DispatchTableOp dt, mlir::ModuleOp mod) const { llvm::SmallSet ancestors; if (!dt.getParent().has_value()) return ancestors; while (dt.getParent().has_value()) { ancestors.insert(*dt.getParent()); dt = mod.lookupSymbol(*dt.getParent()); } return ancestors; } // Generate comparison of type descriptor addresses. mlir::Value genTypeDescCompare(mlir::Location loc, mlir::Value selector, mlir::Type ty, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter) const { assert(ty.isa() && "expect fir.record type"); fir::RecordType recTy = ty.dyn_cast(); std::string typeDescName = fir::NameUniquer::getTypeDescriptorName(recTy.getName()); auto typeDescGlobal = mod.lookupSymbol(typeDescName); if (!typeDescGlobal) return {}; auto typeDescAddr = rewriter.create( loc, fir::ReferenceType::get(typeDescGlobal.getType()), typeDescGlobal.getSymbol()); auto intPtrTy = rewriter.getIndexType(); mlir::Type tdescType = fir::TypeDescType::get(mlir::NoneType::get(rewriter.getContext())); mlir::Value selectorTdescAddr = rewriter.create(loc, tdescType, selector); auto typeDescInt = rewriter.create(loc, intPtrTy, typeDescAddr); auto selectorTdescInt = rewriter.create(loc, intPtrTy, selectorTdescAddr); return rewriter.create( loc, mlir::arith::CmpIPredicate::eq, typeDescInt, selectorTdescInt); } static int getTypeCode(mlir::Type ty, fir::KindMapping &kindMap) { if (auto intTy = ty.dyn_cast()) return fir::integerBitsToTypeCode(intTy.getWidth()); if (auto floatTy = ty.dyn_cast()) return fir::realBitsToTypeCode(floatTy.getWidth()); if (auto logicalTy = ty.dyn_cast()) return fir::logicalBitsToTypeCode( kindMap.getLogicalBitsize(logicalTy.getFKind())); if (fir::isa_complex(ty)) { if (auto cmplxTy = ty.dyn_cast()) return fir::complexBitsToTypeCode( cmplxTy.getElementType().cast().getWidth()); auto cmplxTy = ty.cast(); return fir::complexBitsToTypeCode( kindMap.getRealBitsize(cmplxTy.getFKind())); } if (auto charTy = ty.dyn_cast()) return fir::characterBitsToTypeCode( kindMap.getCharacterBitsize(charTy.getFKind())); return 0; } mlir::LogicalResult genTypeLadderStep(mlir::Location loc, mlir::Value selector, mlir::Attribute attr, mlir::Block *dest, std::optional destOps, mlir::ModuleOp mod, mlir::PatternRewriter &rewriter, fir::KindMapping &kindMap) const { mlir::Value cmp; // TYPE IS type guard comparison are all done inlined. if (auto a = attr.dyn_cast()) { if (fir::isa_trivial(a.getType()) || a.getType().isa()) { // For type guard statement with Intrinsic type spec the type code of // the descriptor is compared. int code = getTypeCode(a.getType(), kindMap); if (code == 0) return mlir::emitError(loc) << "type code unavailable for " << a.getType(); mlir::Value typeCode = rewriter.create( loc, rewriter.getI8IntegerAttr(code)); mlir::Value selectorTypeCode = rewriter.create( loc, rewriter.getI8Type(), selector); cmp = rewriter.create( loc, mlir::arith::CmpIPredicate::eq, selectorTypeCode, typeCode); } else { // Flang inline the kind parameter in the type descriptor so we can // directly check if the type descriptor addresses are identical for // the TYPE IS type guard statement. mlir::Value res = genTypeDescCompare(loc, selector, a.getType(), mod, rewriter); if (!res) return mlir::failure(); cmp = res; } // CLASS IS type guard statement is done with a runtime call. } else if (auto a = attr.dyn_cast()) { // Retrieve the type descriptor from the type guard statement record type. assert(a.getType().isa() && "expect fir.record type"); fir::RecordType recTy = a.getType().dyn_cast(); std::string typeDescName = fir::NameUniquer::getTypeDescriptorName(recTy.getName()); auto typeDescGlobal = mod.lookupSymbol(typeDescName); auto typeDescAddr = rewriter.create( loc, fir::ReferenceType::get(typeDescGlobal.getType()), typeDescGlobal.getSymbol()); mlir::Type typeDescTy = ReferenceType::get(rewriter.getNoneType()); mlir::Value typeDesc = rewriter.create(loc, typeDescTy, typeDescAddr); // Prepare the selector descriptor for the runtime call. mlir::Type descNoneTy = fir::BoxType::get(rewriter.getNoneType()); mlir::Value descSelector = rewriter.create(loc, descNoneTy, selector); // Generate runtime call. llvm::StringRef fctName = RTNAME_STRING(ClassIs); mlir::func::FuncOp callee; { // Since conversion is done in parallel for each fir.select_type // operation, the runtime function insertion must be threadsafe. std::lock_guard lock(*moduleMutex); callee = fir::createFuncOp(rewriter.getUnknownLoc(), mod, fctName, rewriter.getFunctionType({descNoneTy, typeDescTy}, rewriter.getI1Type())); } cmp = rewriter .create(loc, callee, mlir::ValueRange{descSelector, typeDesc}) .getResult(0); } auto *thisBlock = rewriter.getInsertionBlock(); auto *newBlock = rewriter.createBlock(dest->getParent(), mlir::Region::iterator(dest)); rewriter.setInsertionPointToEnd(thisBlock); if (destOps.has_value()) rewriter.create(loc, cmp, dest, destOps.value(), newBlock, std::nullopt); else rewriter.create(loc, cmp, dest, newBlock); rewriter.setInsertionPointToEnd(newBlock); return mlir::success(); } private: // Mutex used to guard insertion of mlir::func::FuncOp in the module. std::mutex *moduleMutex; }; /// Convert FIR structured control flow ops to CFG ops. class CfgConversion : public fir::impl::CFGConversionBase { public: mlir::LogicalResult initialize(mlir::MLIRContext *ctx) override { moduleMutex = new std::mutex(); return mlir::success(); } void runOnOperation() override { auto *context = &getContext(); mlir::RewritePatternSet patterns(context); patterns.insert( context, forceLoopToExecuteOnce); patterns.insert(context, moduleMutex); mlir::ConversionTarget target(*context); target.addLegalDialect(); // apply the patterns target.addIllegalOp(); target.markUnknownOpDynamicallyLegal([](Operation *) { return true; }); if (mlir::failed(mlir::applyPartialConversion(getOperation(), target, std::move(patterns)))) { mlir::emitError(mlir::UnknownLoc::get(context), "error in converting to CFG\n"); signalPassFailure(); } } private: std::mutex *moduleMutex; }; } // namespace /// Convert FIR's structured control flow ops to CFG ops. This /// conversion enables the `createLowerToCFGPass` to transform these to CFG /// form. std::unique_ptr fir::createFirToCfgPass() { return std::make_unique(); }