//===- TrainingLogger.cpp - mlgo feature/reward logging -------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements logging infrastructure for extracting features and // rewards for mlgo policy training. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/TensorSpec.h" #include "llvm/Config/config.h" #if defined(LLVM_HAVE_TFLITE) #include "llvm/ADT/Twine.h" #include "llvm/Analysis/Utils/TrainingLogger.h" #include "llvm/Support/Base64.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/JSON.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/Path.h" #include "llvm/Support/raw_ostream.h" #include "google/protobuf/struct.pb.h" #include "google/protobuf/text_format.h" #include "tensorflow/core/example/example.pb.h" #include #include using namespace llvm; using google::protobuf::Message; using google::protobuf::TextFormat; static cl::opt ProtobufTextMode("tfutils-text-log", cl::init(false), cl::Hidden, cl::desc("Output textual (human-readable) protobuf.")); static cl::opt UseSimpleLogger("tfutils-use-simplelogger", cl::init(false), cl::Hidden, cl::desc("Output simple (non-protobuf) log.")); namespace { void serialize(const Message &SE, std::string *OutStr) { if (ProtobufTextMode) { TextFormat::PrintToString(SE, OutStr); } else { *OutStr = SE.SerializeAsString(); } } } // namespace namespace llvm { class LoggerDataImpl { protected: const std::vector LoggedFeatureSpecs; const TensorSpec RewardSpec; const bool IncludeReward; LoggerDataImpl(const std::vector &LoggedSpecs, const TensorSpec &RewardSpec, bool IncludeReward) : LoggedFeatureSpecs(LoggedSpecs), RewardSpec(RewardSpec), IncludeReward(IncludeReward) {} virtual void logRewardImpl(const char *Value, size_t Size) = 0; public: // flush the logged info to a stream and clear the log contents. virtual void flush(std::string *Str) = 0; virtual char *addNewTensor(size_t FeatureID) = 0; virtual size_t getNrRecords() const = 0; virtual ~LoggerDataImpl() = default; template void logReward(T Value) { logRewardImpl(reinterpret_cast(&Value), sizeof(T)); } }; // The design goals of the simple logger are: // - no dependencies that llvm doesn't already have. // - support streaming, so that we don't need to buffer data during compilation // - 0-decoding tensor values. Tensor values are potentially very large buffers // of scalars. Because of their potentially large size, avoiding // serialization/deserialization overhead is preferred. // // The simple logger produces an output of the form (each line item on its line) // - header: a json object describing the data that will follow. // - context: e.g. function name, for regalloc, or "default" for module-wide // optimizations like the inliner. This is the context to which the subsequent // data corresponds. // - observation number. // - tensor values - raw bytes of the tensors, in the order given in the header. // The values are in succession, i.e. no separator is found between successive // tensor values. At the end, there is a new line character. // - [score] - this is optional, and is present if it was present in the header. // Currently, for final rewards, we output "0" scores after each observation, // except for the last one. // // The file should be read as binary, but the reason we use newlines is mostly // ease of debugging: the log can be opened in a text editor and, while tensor // values are inscrutable, at least the sequence of data can be easily observed. // Of course, the buffer of tensor values could contain '\n' bytes. A reader // should use the header information to know how much data to read for the // tensor values, and not use line information for that. // // An example reader, used for test, is available at // Analysis/models/log_reader.py // // Example: // {"features":[list of TensorSpecs], "score":} // {"context": "aFunction"} // {"observation": 0} // // {"outcome": 0} // // {"observation": 1} // ... // {"context": "anotherFunction"} // {"observation": 0} // ... // class SimpleLoggerDataImpl : public LoggerDataImpl { std::vector> FeatureStorage; std::vector> RewardStorage; raw_ostream &dumpHeader(raw_ostream &OS) const { json::OStream JOS(OS); JOS.object([&]() { JOS.attributeArray("features", [&]() { for (const auto &TS : LoggedFeatureSpecs) TS.toJSON(JOS); }); if (IncludeReward) { JOS.attributeBegin("score"); RewardSpec.toJSON(JOS); JOS.attributeEnd(); } }); OS << "\n"; return OS; } raw_ostream &startContext(raw_ostream &OS, StringRef Name) const { json::OStream JOS(OS); JOS.object([&]() { JOS.attribute("context", Name); }); OS << "\n"; return OS; } raw_ostream &startObservation(raw_ostream &OS, size_t Nr) const { json::OStream JOS(OS); JOS.object([&]() { JOS.attribute("observation", Nr); }); OS << "\n"; return OS; } raw_ostream &writeOutcome(raw_ostream &OS, size_t CurrentObservationID) const { if (IncludeReward) { OS << "\n"; json::OStream JOS(OS); JOS.object([&]() { JOS.attribute("outcome", CurrentObservationID); }); OS << "\n"; OS.write(RewardStorage[CurrentObservationID].get(), RewardSpec.getTotalTensorBufferSize()); } OS << "\n"; return OS; } void flush(std::string *Str) override { llvm_unreachable("Use the ostream implementation"); } char *addNewTensor(size_t FeatureID) override { return FeatureStorage .emplace_back( new char[LoggedFeatureSpecs[FeatureID].getTotalTensorBufferSize()]) .get(); } size_t getNrRecords() const override { assert(FeatureStorage.size() % LoggedFeatureSpecs.size() == 0); return FeatureStorage.size() / LoggedFeatureSpecs.size(); } void logRewardImpl(const char *Value, size_t Size) override { std::memcpy(RewardStorage.emplace_back(new char[Size]).get(), Value, Size); } public: SimpleLoggerDataImpl(const std::vector &LoggedSpecs, const TensorSpec &RewardSpec, bool IncludeReward) : LoggerDataImpl(LoggedSpecs, RewardSpec, IncludeReward) {} raw_ostream &flush(raw_ostream &OS, bool WithHeader = true, StringRef Context = "default") const { if (WithHeader) dumpHeader(OS); startContext(OS, Context); size_t CurrentObservationID = 0; for (size_t I = 0; I < FeatureStorage.size(); ++I) { size_t TensorID = I % LoggedFeatureSpecs.size(); if (TensorID == 0) { CurrentObservationID = I / LoggedFeatureSpecs.size(); startObservation(OS, CurrentObservationID); } OS.write(FeatureStorage[I].get(), LoggedFeatureSpecs[TensorID].getTotalTensorBufferSize()); if (TensorID == LoggedFeatureSpecs.size() - 1) { writeOutcome(OS, CurrentObservationID); } } return OS; } }; class TFSequenceExampleLoggerDataImpl : public LoggerDataImpl { std::vector FeatureLists; tensorflow::FeatureList Reward; bool isSelfConsistent(const tensorflow::SequenceExample &SE, size_t NrRecords) const { bool Ret = true; for (const auto &TSpecs : LoggedFeatureSpecs) { const auto &Name = TSpecs.name(); const auto &FL = SE.feature_lists().feature_list().at(Name).feature(); if (NrRecords != static_cast(FL.size())) { dbgs() << "[TF-UTILS]: " << Name << " has missing records. Expected " << NrRecords << " got " << FL.size() << "\n"; Ret = false; } } if (IncludeReward && static_cast(SE.feature_lists() .feature_list() .at(RewardSpec.name()) .feature() .size()) != NrRecords) { dbgs() << "[TF-UTILS]: reward is missing records.\n"; Ret = false; } return Ret; } void transferLog(tensorflow::SequenceExample &SE) { auto *FL = SE.mutable_feature_lists()->mutable_feature_list(); if (IncludeReward) (*FL)[RewardSpec.name()] = std::move(Reward); assert(FeatureLists.size() == LoggedFeatureSpecs.size()); for (size_t I = 0; I < FeatureLists.size(); ++I) { const auto &LFS = LoggedFeatureSpecs[I]; (*FL)[LFS.name()] = std::move(FeatureLists[I]); } } public: TFSequenceExampleLoggerDataImpl(const std::vector &LoggedSpecs, const TensorSpec &RewardSpec, bool IncludeReward) : LoggerDataImpl(LoggedSpecs, RewardSpec, IncludeReward), FeatureLists(LoggedFeatureSpecs.size()) {} // flush the logged info to a stream and clear the log contents. void flush(std::string *Str) override { size_t NrRecords = getNrRecords(); (void)NrRecords; tensorflow::SequenceExample SE; transferLog(SE); assert(isSelfConsistent(SE, NrRecords)); serialize(SE, Str); } char *addNewTensor(size_t FeatureID) override { const auto &Spec = LoggedFeatureSpecs[FeatureID]; if (Spec.isElementType()) { auto *RF = FeatureLists[FeatureID] .add_feature() ->mutable_float_list() ->mutable_value(); RF->Resize(Spec.getElementCount(), 0.0); return reinterpret_cast(RF->mutable_data()); } else if (Spec.isElementType() || Spec.isElementType()) { auto *RF = FeatureLists[FeatureID] .add_feature() ->mutable_int64_list() ->mutable_value(); RF->Resize(Spec.getElementCount(), 0); return reinterpret_cast(RF->mutable_data()); } llvm_unreachable("Unsupported tensor type."); } void logRewardImpl(const char *Value, size_t Size) override { assert(IncludeReward); if (RewardSpec.isElementType()) Reward.add_feature()->mutable_float_list()->add_value( *reinterpret_cast(Value)); else if (RewardSpec.isElementType()) Reward.add_feature()->mutable_int64_list()->add_value( *reinterpret_cast(Value)); else if (RewardSpec.isElementType()) Reward.add_feature()->mutable_int64_list()->add_value( *reinterpret_cast(Value)); else llvm_unreachable("Unsupported tensor type."); } size_t getNrRecords() const override { return FeatureLists.empty() ? 0 : FeatureLists[0].feature().size(); } }; } // namespace llvm Logger::Logger(const std::vector &FeatureSpecs, const TensorSpec &RewardSpec, bool IncludeReward) : FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec), IncludeReward(IncludeReward) { if (UseSimpleLogger) LoggerData = std::make_unique( FeatureSpecs, RewardSpec, IncludeReward); else LoggerData = std::make_unique( FeatureSpecs, RewardSpec, IncludeReward); } Logger::~Logger() {} #define LOG_REWARD(NAME, TYPE) \ void Logger::log##NAME##Reward(TYPE Value) { \ assert(IncludeReward); \ LoggerData->logReward(Value); \ } LOG_REWARD(Float, float) LOG_REWARD(Int32, int32_t) LOG_REWARD(Int64, int64_t) #undef LOG_REWARD #define LOG_FINAL_REWARD(NAME, TYPE) \ void Logger::log##NAME##FinalReward(TYPE Value) { \ assert(RewardSpec.isElementType()); \ for (size_t I = 1; I < LoggerData->getNrRecords(); ++I) \ log##NAME##Reward(0); \ log##NAME##Reward(Value); \ } LOG_FINAL_REWARD(Float, float) LOG_FINAL_REWARD(Int32, int32_t) LOG_FINAL_REWARD(Int64, int64_t) #undef LOG_FINAL_REWARD void Logger::logFloatValue(size_t FeatureID, const float *Value) { assert(FeatureSpecs[FeatureID].isElementType()); logSpecifiedTensorValue(FeatureID, reinterpret_cast(Value)); } void Logger::logInt64Value(size_t FeatureID, const int64_t *Value) { assert(FeatureSpecs[FeatureID].isElementType()); logSpecifiedTensorValue(FeatureID, reinterpret_cast(Value)); } void Logger::logInt32Value(size_t FeatureID, const int32_t *Value) { assert(FeatureSpecs[FeatureID].isElementType()); logSpecifiedTensorValue(FeatureID, reinterpret_cast(Value)); } void Logger::logSpecifiedTensorValue(size_t FeatureID, const char *RawData) { const auto &Spec = FeatureSpecs[FeatureID]; char *Buff = addEntryAndGetFloatOrInt64Buffer(FeatureID); if (Spec.isElementType()) for (size_t I = 0; I < Spec.getElementCount(); ++I) (reinterpret_cast(Buff))[I] = static_cast((reinterpret_cast(RawData))[I]); else if (Spec.isElementType() || Spec.isElementType()) std::memcpy(Buff, RawData, Spec.getElementCount() * Spec.getElementByteSize()); else llvm_unreachable("Unsupported tensor type"); } char *Logger::addEntryAndGetFloatOrInt64Buffer(size_t FeatureID) { return reinterpret_cast(LoggerData->addNewTensor(FeatureID)); } void Logger::flush(std::string *Str) { LoggerData->flush(Str); } void Logger::flush(raw_ostream &OS) { if (UseSimpleLogger) { reinterpret_cast(LoggerData.get())->flush(OS); } else { std::string Buff; LoggerData->flush(&Buff); OS << Buff; } } void Logger::flushLogs(raw_ostream &OS, const StringMap> &Loggers) { if (UseSimpleLogger) { bool IsFirst = true; for (const auto &NamedLogger : Loggers) { auto *Impl = NamedLogger.second->LoggerData.get(); reinterpret_cast(Impl)->flush( OS, IsFirst, NamedLogger.first()); IsFirst = false; } } else { google::protobuf::Struct Msg; for (const auto &NamedLogger : Loggers) { tensorflow::SequenceExample SE; const auto &Logger = NamedLogger.second; std::string Unencoded; if (Logger->LoggerData->getNrRecords() > 0) Logger->flush(&Unencoded); (*Msg.mutable_fields())[NamedLogger.first().str()] .mutable_string_value() ->append(ProtobufTextMode ? Unencoded : encodeBase64(Unencoded)); } std::string OutStr; serialize(Msg, &OutStr); OS << OutStr; } } #endif // defined(LLVM_HAVE_TFLITE)