//===- Matrix.cpp - MLIR Matrix Class -------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Analysis/Presburger/Matrix.h" #include "mlir/Analysis/Presburger/Utils.h" #include "llvm/Support/MathExtras.h" using namespace mlir; using namespace presburger; Matrix::Matrix(unsigned rows, unsigned columns, unsigned reservedRows, unsigned reservedColumns) : nRows(rows), nColumns(columns), nReservedColumns(std::max(nColumns, reservedColumns)), data(nRows * nReservedColumns) { data.reserve(std::max(nRows, reservedRows) * nReservedColumns); } Matrix Matrix::identity(unsigned dimension) { Matrix matrix(dimension, dimension); for (unsigned i = 0; i < dimension; ++i) matrix(i, i) = 1; return matrix; } unsigned Matrix::getNumReservedRows() const { return data.capacity() / nReservedColumns; } void Matrix::reserveRows(unsigned rows) { data.reserve(rows * nReservedColumns); } unsigned Matrix::appendExtraRow() { resizeVertically(nRows + 1); return nRows - 1; } unsigned Matrix::appendExtraRow(ArrayRef elems) { assert(elems.size() == nColumns && "elems must match row length!"); unsigned row = appendExtraRow(); for (unsigned col = 0; col < nColumns; ++col) at(row, col) = elems[col]; return row; } void Matrix::resizeHorizontally(unsigned newNColumns) { if (newNColumns < nColumns) removeColumns(newNColumns, nColumns - newNColumns); if (newNColumns > nColumns) insertColumns(nColumns, newNColumns - nColumns); } void Matrix::resize(unsigned newNRows, unsigned newNColumns) { resizeHorizontally(newNColumns); resizeVertically(newNRows); } void Matrix::resizeVertically(unsigned newNRows) { nRows = newNRows; data.resize(nRows * nReservedColumns); } void Matrix::swapRows(unsigned row, unsigned otherRow) { assert((row < getNumRows() && otherRow < getNumRows()) && "Given row out of bounds"); if (row == otherRow) return; for (unsigned col = 0; col < nColumns; col++) std::swap(at(row, col), at(otherRow, col)); } void Matrix::swapColumns(unsigned column, unsigned otherColumn) { assert((column < getNumColumns() && otherColumn < getNumColumns()) && "Given column out of bounds"); if (column == otherColumn) return; for (unsigned row = 0; row < nRows; row++) std::swap(at(row, column), at(row, otherColumn)); } MutableArrayRef Matrix::getRow(unsigned row) { return {&data[row * nReservedColumns], nColumns}; } ArrayRef Matrix::getRow(unsigned row) const { return {&data[row * nReservedColumns], nColumns}; } void Matrix::setRow(unsigned row, ArrayRef elems) { assert(elems.size() == getNumColumns() && "elems size must match row length!"); for (unsigned i = 0, e = getNumColumns(); i < e; ++i) at(row, i) = elems[i]; } void Matrix::insertColumn(unsigned pos) { insertColumns(pos, 1); } void Matrix::insertColumns(unsigned pos, unsigned count) { if (count == 0) return; assert(pos <= nColumns); unsigned oldNReservedColumns = nReservedColumns; if (nColumns + count > nReservedColumns) { nReservedColumns = llvm::NextPowerOf2(nColumns + count); data.resize(nRows * nReservedColumns); } nColumns += count; for (int ri = nRows - 1; ri >= 0; --ri) { for (int ci = nReservedColumns - 1; ci >= 0; --ci) { unsigned r = ri; unsigned c = ci; MPInt &dest = data[r * nReservedColumns + c]; if (c >= nColumns) { // NOLINT // Out of bounds columns are zero-initialized. NOLINT because clang-tidy // complains about this branch being the same as the c >= pos one. // // TODO: this case can be skipped if the number of reserved columns // didn't change. dest = 0; } else if (c >= pos + count) { // Shift the data occuring after the inserted columns. dest = data[r * oldNReservedColumns + c - count]; } else if (c >= pos) { // The inserted columns are also zero-initialized. dest = 0; } else { // The columns before the inserted columns stay at the same (row, col) // but this corresponds to a different location in the linearized array // if the number of reserved columns changed. if (nReservedColumns == oldNReservedColumns) break; dest = data[r * oldNReservedColumns + c]; } } } } void Matrix::removeColumn(unsigned pos) { removeColumns(pos, 1); } void Matrix::removeColumns(unsigned pos, unsigned count) { if (count == 0) return; assert(pos + count - 1 < nColumns); for (unsigned r = 0; r < nRows; ++r) { for (unsigned c = pos; c < nColumns - count; ++c) at(r, c) = at(r, c + count); for (unsigned c = nColumns - count; c < nColumns; ++c) at(r, c) = 0; } nColumns -= count; } void Matrix::insertRow(unsigned pos) { insertRows(pos, 1); } void Matrix::insertRows(unsigned pos, unsigned count) { if (count == 0) return; assert(pos <= nRows); resizeVertically(nRows + count); for (int r = nRows - 1; r >= int(pos + count); --r) copyRow(r - count, r); for (int r = pos + count - 1; r >= int(pos); --r) for (unsigned c = 0; c < nColumns; ++c) at(r, c) = 0; } void Matrix::removeRow(unsigned pos) { removeRows(pos, 1); } void Matrix::removeRows(unsigned pos, unsigned count) { if (count == 0) return; assert(pos + count - 1 <= nRows); for (unsigned r = pos; r + count < nRows; ++r) copyRow(r + count, r); resizeVertically(nRows - count); } void Matrix::copyRow(unsigned sourceRow, unsigned targetRow) { if (sourceRow == targetRow) return; for (unsigned c = 0; c < nColumns; ++c) at(targetRow, c) = at(sourceRow, c); } void Matrix::fillRow(unsigned row, const MPInt &value) { for (unsigned col = 0; col < nColumns; ++col) at(row, col) = value; } void Matrix::addToRow(unsigned sourceRow, unsigned targetRow, const MPInt &scale) { addToRow(targetRow, getRow(sourceRow), scale); } void Matrix::addToRow(unsigned row, ArrayRef rowVec, const MPInt &scale) { if (scale == 0) return; for (unsigned col = 0; col < nColumns; ++col) at(row, col) += scale * rowVec[col]; } void Matrix::addToColumn(unsigned sourceColumn, unsigned targetColumn, const MPInt &scale) { if (scale == 0) return; for (unsigned row = 0, e = getNumRows(); row < e; ++row) at(row, targetColumn) += scale * at(row, sourceColumn); } void Matrix::negateColumn(unsigned column) { for (unsigned row = 0, e = getNumRows(); row < e; ++row) at(row, column) = -at(row, column); } void Matrix::negateRow(unsigned row) { for (unsigned column = 0, e = getNumColumns(); column < e; ++column) at(row, column) = -at(row, column); } MPInt Matrix::normalizeRow(unsigned row, unsigned cols) { return normalizeRange(getRow(row).slice(0, cols)); } MPInt Matrix::normalizeRow(unsigned row) { return normalizeRow(row, getNumColumns()); } SmallVector Matrix::preMultiplyWithRow(ArrayRef rowVec) const { assert(rowVec.size() == getNumRows() && "Invalid row vector dimension!"); SmallVector result(getNumColumns(), MPInt(0)); for (unsigned col = 0, e = getNumColumns(); col < e; ++col) for (unsigned i = 0, e = getNumRows(); i < e; ++i) result[col] += rowVec[i] * at(i, col); return result; } SmallVector Matrix::postMultiplyWithColumn(ArrayRef colVec) const { assert(getNumColumns() == colVec.size() && "Invalid column vector dimension!"); SmallVector result(getNumRows(), MPInt(0)); for (unsigned row = 0, e = getNumRows(); row < e; row++) for (unsigned i = 0, e = getNumColumns(); i < e; i++) result[row] += at(row, i) * colVec[i]; return result; } /// Set M(row, targetCol) to its remainder on division by M(row, sourceCol) /// by subtracting from column targetCol an appropriate integer multiple of /// sourceCol. This brings M(row, targetCol) to the range [0, M(row, /// sourceCol)). Apply the same column operation to otherMatrix, with the same /// integer multiple. static void modEntryColumnOperation(Matrix &m, unsigned row, unsigned sourceCol, unsigned targetCol, Matrix &otherMatrix) { assert(m(row, sourceCol) != 0 && "Cannot divide by zero!"); assert(m(row, sourceCol) > 0 && "Source must be positive!"); MPInt ratio = -floorDiv(m(row, targetCol), m(row, sourceCol)); m.addToColumn(sourceCol, targetCol, ratio); otherMatrix.addToColumn(sourceCol, targetCol, ratio); } std::pair Matrix::computeHermiteNormalForm() const { // We start with u as an identity matrix and perform operations on h until h // is in hermite normal form. We apply the same sequence of operations on u to // obtain a transform that takes h to hermite normal form. Matrix h = *this; Matrix u = Matrix::identity(h.getNumColumns()); unsigned echelonCol = 0; // Invariant: in all rows above row, all columns from echelonCol onwards // are all zero elements. In an iteration, if the curent row has any non-zero // elements echelonCol onwards, we bring one to echelonCol and use it to // make all elements echelonCol + 1 onwards zero. for (unsigned row = 0; row < h.getNumRows(); ++row) { // Search row for a non-empty entry, starting at echelonCol. unsigned nonZeroCol = echelonCol; for (unsigned e = h.getNumColumns(); nonZeroCol < e; ++nonZeroCol) { if (h(row, nonZeroCol) == 0) continue; break; } // Continue to the next row with the same echelonCol if this row is all // zeros from echelonCol onwards. if (nonZeroCol == h.getNumColumns()) continue; // Bring the non-zero column to echelonCol. This doesn't affect rows // above since they are all zero at these columns. if (nonZeroCol != echelonCol) { h.swapColumns(nonZeroCol, echelonCol); u.swapColumns(nonZeroCol, echelonCol); } // Make h(row, echelonCol) non-negative. if (h(row, echelonCol) < 0) { h.negateColumn(echelonCol); u.negateColumn(echelonCol); } // Make all the entries in row after echelonCol zero. for (unsigned i = echelonCol + 1, e = h.getNumColumns(); i < e; ++i) { // We make h(row, i) non-negative, and then apply the Euclidean GCD // algorithm to (row, i) and (row, echelonCol). At the end, one of them // has value equal to the gcd of the two entries, and the other is zero. if (h(row, i) < 0) { h.negateColumn(i); u.negateColumn(i); } unsigned targetCol = i, sourceCol = echelonCol; // At every step, we set h(row, targetCol) %= h(row, sourceCol), and // swap the indices sourceCol and targetCol. (not the columns themselves) // This modulo is implemented as a subtraction // h(row, targetCol) -= quotient * h(row, sourceCol), // where quotient = floor(h(row, targetCol) / h(row, sourceCol)), // which brings h(row, targetCol) to the range [0, h(row, sourceCol)). // // We are only allowed column operations; we perform the above // for every row, i.e., the above subtraction is done as a column // operation. This does not affect any rows above us since they are // guaranteed to be zero at these columns. while (h(row, targetCol) != 0 && h(row, sourceCol) != 0) { modEntryColumnOperation(h, row, sourceCol, targetCol, u); std::swap(targetCol, sourceCol); } // One of (row, echelonCol) and (row, i) is zero and the other is the gcd. // Make it so that (row, echelonCol) holds the non-zero value. if (h(row, echelonCol) == 0) { h.swapColumns(i, echelonCol); u.swapColumns(i, echelonCol); } } // Make all entries before echelonCol non-negative and strictly smaller // than the pivot entry. for (unsigned i = 0; i < echelonCol; ++i) modEntryColumnOperation(h, row, echelonCol, i, u); ++echelonCol; } return {h, u}; } void Matrix::print(raw_ostream &os) const { for (unsigned row = 0; row < nRows; ++row) { for (unsigned column = 0; column < nColumns; ++column) os << at(row, column) << ' '; os << '\n'; } } void Matrix::dump() const { print(llvm::errs()); } bool Matrix::hasConsistentState() const { if (data.size() != nRows * nReservedColumns) return false; if (nColumns > nReservedColumns) return false; for (unsigned r = 0; r < nRows; ++r) for (unsigned c = nColumns; c < nReservedColumns; ++c) if (data[r * nReservedColumns + c] != 0) return false; return true; }