//===- AMDGPUToROCDL.cpp - AMDGPU to ROCDL dialect conversion -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.h" #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" #include "mlir/Conversion/LLVMCommon/Pattern.h" #include "mlir/Dialect/AMDGPU/AMDGPUDialect.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/LLVMIR/ROCDLDialect.h" #include "mlir/Pass/Pass.h" #include "llvm/ADT/STLExtras.h" namespace mlir { #define GEN_PASS_DEF_CONVERTAMDGPUTOROCDL #include "mlir/Conversion/Passes.h.inc" } // namespace mlir using namespace mlir; using namespace mlir::amdgpu; static Value createI32Constant(ConversionPatternRewriter &rewriter, Location loc, int32_t value) { Type llvmI32 = rewriter.getI32Type(); return rewriter.createOrFold(loc, llvmI32, value); } namespace { /// Define lowering patterns for raw buffer ops template struct RawBufferOpLowering : public ConvertOpToLLVMPattern { RawBufferOpLowering(LLVMTypeConverter &converter, Chipset chipset) : ConvertOpToLLVMPattern(converter), chipset(chipset) {} Chipset chipset; static constexpr uint32_t maxVectorOpWidth = 128; LogicalResult matchAndRewrite(GpuOp gpuOp, typename GpuOp::Adaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = gpuOp.getLoc(); Value memref = adaptor.getMemref(); Value unconvertedMemref = gpuOp.getMemref(); MemRefType memrefType = unconvertedMemref.getType().cast(); if (chipset.majorVersion < 9) return gpuOp.emitOpError("Raw buffer ops require GCN or higher"); Value storeData = adaptor.getODSOperands(0)[0]; if (storeData == memref) // no write component to this op storeData = Value(); Type wantedDataType; if (storeData) wantedDataType = storeData.getType(); else wantedDataType = gpuOp.getODSResults(0)[0].getType(); Type llvmWantedDataType = this->typeConverter->convertType(wantedDataType); Type i32 = rewriter.getI32Type(); Type llvmI32 = this->typeConverter->convertType(i32); int64_t elementByteWidth = memrefType.getElementTypeBitWidth() / 8; Value byteWidthConst = createI32Constant(rewriter, loc, elementByteWidth); // If we want to load a vector with total size <= 32 // bits, use a scalar load and bitcast it. Similarly, if bitsize(T) < 32 // and the total load size is >= 32, use a vector load of N / (bitsize(T) / // 32) x i32 and bitcast. Type llvmBufferValType = llvmWantedDataType; if (auto dataVector = wantedDataType.dyn_cast()) { uint32_t elemBits = dataVector.getElementTypeBitWidth(); uint32_t totalBits = elemBits * dataVector.getNumElements(); if (totalBits > maxVectorOpWidth) return gpuOp.emitOpError( "Total width of loads or stores must be no more than " + Twine(maxVectorOpWidth) + " bits, but we call for " + Twine(totalBits) + " bits. This should've been caught in validation"); if (elemBits < 32) { if (totalBits > 32) { if (totalBits % 32 != 0) return gpuOp.emitOpError("Load or store of more than 32-bits that " "doesn't fit into words. Can't happen\n"); llvmBufferValType = this->typeConverter->convertType( VectorType::get(totalBits / 32, i32)); } else { llvmBufferValType = this->typeConverter->convertType( rewriter.getIntegerType(totalBits)); } } } SmallVector args; if (storeData) { if (llvmBufferValType != llvmWantedDataType) { Value castForStore = rewriter.create(loc, llvmBufferValType, storeData); args.push_back(castForStore); } else { args.push_back(storeData); } } // Construct buffer descriptor from memref, attributes int64_t offset = 0; SmallVector strides; if (failed(getStridesAndOffset(memrefType, strides, offset))) return gpuOp.emitOpError("Can't lower non-stride-offset memrefs"); // Resource descriptor // bits 0-47: base address // bits 48-61: stride (0 for raw buffers) // bit 62: texture cache coherency (always 0) // bit 63: enable swizzles (always off for raw buffers) // bits 64-95 (word 2): Number of records, units of stride // bits 96-127 (word 3): See below Type llvm4xI32 = this->typeConverter->convertType(VectorType::get(4, i32)); MemRefDescriptor memrefDescriptor(memref); Type llvmI64 = this->typeConverter->convertType(rewriter.getI64Type()); Value c32I64 = rewriter.create( loc, llvmI64, rewriter.getI64IntegerAttr(32)); Value resource = rewriter.create(loc, llvm4xI32); Value ptr = memrefDescriptor.alignedPtr(rewriter, loc); Value ptrAsInt = rewriter.create(loc, llvmI64, ptr); Value lowHalf = rewriter.create(loc, llvmI32, ptrAsInt); resource = rewriter.create( loc, llvm4xI32, resource, lowHalf, this->createIndexConstant(rewriter, loc, 0)); // Bits 48-63 are used both for the stride of the buffer and (on gfx10) for // enabling swizzling. Prevent the high bits of pointers from accidentally // setting those flags. Value highHalfShifted = rewriter.create( loc, llvmI32, rewriter.create(loc, ptrAsInt, c32I64)); Value highHalfTruncated = rewriter.create( loc, llvmI32, highHalfShifted, createI32Constant(rewriter, loc, 0x0000ffff)); resource = rewriter.create( loc, llvm4xI32, resource, highHalfTruncated, this->createIndexConstant(rewriter, loc, 1)); Value numRecords; if (memrefType.hasStaticShape()) { numRecords = createI32Constant( rewriter, loc, static_cast(memrefType.getNumElements() * elementByteWidth)); } else { Value maxIndex; for (uint32_t i = 0, e = memrefType.getRank(); i < e; ++i) { Value size = memrefDescriptor.size(rewriter, loc, i); Value stride = memrefDescriptor.stride(rewriter, loc, i); stride = rewriter.create(loc, stride, byteWidthConst); Value maxThisDim = rewriter.create(loc, size, stride); maxIndex = maxIndex ? rewriter.create(loc, maxIndex, maxThisDim) : maxThisDim; } numRecords = rewriter.create(loc, llvmI32, maxIndex); } resource = rewriter.create( loc, llvm4xI32, resource, numRecords, this->createIndexConstant(rewriter, loc, 2)); // Final word: // bits 0-11: dst sel, ignored by these intrinsics // bits 12-14: data format (ignored, must be nonzero, 7=float) // bits 15-18: data format (ignored, must be nonzero, 4=32bit) // bit 19: In nested heap (0 here) // bit 20: Behavior on unmap (0 means "return 0 / ignore") // bits 21-22: Index stride for swizzles (N/A) // bit 23: Add thread ID (0) // bit 24: Reserved to 1 (RDNA) or 0 (CDNA) // bits 25-26: Reserved (0) // bit 27: Buffer is non-volatile (CDNA only) // bits 28-29: Out of bounds select (0 = structured, 1 = check index, 2 = // none, 3 = either swizzles or testing against offset field) RDNA only // bits 30-31: Type (must be 0) uint32_t word3 = (7 << 12) | (4 << 15); if (chipset.majorVersion == 10) { word3 |= (1 << 24); uint32_t oob = adaptor.getBoundsCheck() ? 3 : 2; word3 |= (oob << 28); } Value word3Const = createI32Constant(rewriter, loc, word3); resource = rewriter.create( loc, llvm4xI32, resource, word3Const, this->createIndexConstant(rewriter, loc, 3)); args.push_back(resource); // Indexing (voffset) Value voffset; for (auto &pair : llvm::enumerate(adaptor.getIndices())) { size_t i = pair.index(); Value index = pair.value(); Value strideOp; if (ShapedType::isDynamic(strides[i])) { strideOp = rewriter.create( loc, memrefDescriptor.stride(rewriter, loc, i), byteWidthConst); } else { strideOp = createI32Constant(rewriter, loc, strides[i] * elementByteWidth); } index = rewriter.create(loc, index, strideOp); voffset = voffset ? rewriter.create(loc, voffset, index) : index; } if (adaptor.getIndexOffset()) { int32_t indexOffset = *gpuOp.getIndexOffset() * elementByteWidth; Value extraOffsetConst = createI32Constant(rewriter, loc, indexOffset); voffset = voffset ? rewriter.create(loc, voffset, extraOffsetConst) : extraOffsetConst; } args.push_back(voffset); Value sgprOffset = adaptor.getSgprOffset(); if (!sgprOffset) sgprOffset = createI32Constant(rewriter, loc, 0); if (ShapedType::isDynamic(offset)) sgprOffset = rewriter.create( loc, memrefDescriptor.offset(rewriter, loc), sgprOffset); else if (offset > 0) sgprOffset = rewriter.create( loc, sgprOffset, createI32Constant(rewriter, loc, offset)); args.push_back(sgprOffset); // bit 0: GLC = 0 (atomics drop value, less coherency) // bits 1-2: SLC, DLC = 0 (similarly) // bit 3: swizzled (0 for raw) args.push_back(createI32Constant(rewriter, loc, 0)); llvm::SmallVector resultTypes(gpuOp->getNumResults(), llvmBufferValType); Operation *lowered = rewriter.create(loc, resultTypes, args, ArrayRef()); if (lowered->getNumResults() == 1) { Value replacement = lowered->getResult(0); if (llvmBufferValType != llvmWantedDataType) { replacement = rewriter.create(loc, llvmWantedDataType, replacement); } rewriter.replaceOp(gpuOp, replacement); } else { rewriter.eraseOp(gpuOp); } return success(); } }; struct LDSBarrierOpLowering : public ConvertOpToLLVMPattern { using ConvertOpToLLVMPattern::ConvertOpToLLVMPattern; LogicalResult matchAndRewrite(LDSBarrierOp op, LDSBarrierOp::Adaptor adaptor, ConversionPatternRewriter &rewriter) const override { auto asmDialectAttr = LLVM::AsmDialectAttr::get(rewriter.getContext(), LLVM::AsmDialect::AD_ATT); const char *asmStr = "s_waitcnt lgkmcnt(0)\ns_barrier"; const char *constraints = ""; rewriter.replaceOpWithNewOp( op, /*resultTypes=*/TypeRange(), /*operands=*/ValueRange(), /*asm_string=*/asmStr, constraints, /*has_side_effects=*/true, /*is_align_stack=*/false, /*asm_dialect=*/asmDialectAttr, /*operand_attrs=*/ArrayAttr()); return success(); } }; } // namespace /// If `input` is a vector of bytes, concatentate those bytes in little-endian /// order to form a single integer of size 8 * [vector length]. This works /// around a wart in the AMDGPU intrinsics where operations that logically take /// vectors of bytes instead integers. Since we do not want to expose this /// implementation detail to MLIR, we correct for it here. static Value mfmaConcatIfNeeded(ConversionPatternRewriter &rewriter, Location loc, Value input) { Type inputType = input.getType(); if (auto vectorType = inputType.dyn_cast()) { if (!vectorType.getElementType().isInteger(8)) return input; int64_t numBytes = vectorType.getNumElements(); Type destType = rewriter.getIntegerType(numBytes * 8); Value result = rewriter.createOrFold( loc, destType, rewriter.getIntegerAttr(destType, 0)); for (int64_t i = 0; i < numBytes; ++i) { Value idxConst = createI32Constant(rewriter, loc, i); Value element = rewriter.create(loc, input, idxConst); Value extended = rewriter.create(loc, destType, element); Value shiftConst = rewriter.createOrFold( loc, destType, rewriter.getIntegerAttr(destType, i * 8)); Value shifted = rewriter.create(loc, extended, shiftConst); result = rewriter.create(loc, result, shifted); } return result; } return input; } /// Return the `rocdl` intrinsic corresponding to a MFMA operation `mfma` /// if one exists. This includes checking to ensure the intrinsic is supported /// on the architecture you are compiling for. static Optional mfmaOpToIntrinsic(MFMAOp mfma, Chipset chipset) { uint32_t m = mfma.getM(), n = mfma.getN(), k = mfma.getK(), b = mfma.getBlocks(); Type sourceElem = mfma.getSourceA().getType(); if (auto sourceType = sourceElem.dyn_cast()) sourceElem = sourceType.getElementType(); Type destElem = mfma.getDestC().getType(); if (auto destType = destElem.dyn_cast()) destElem = destType.getElementType(); if (sourceElem.isF32() && destElem.isF32()) { if (mfma.getReducePrecision() && chipset.minorVersion >= 0x40) { if (m == 32 && n == 32 && k == 4 && b == 1) return ROCDL::mfma_f32_32x32x4_xf32::getOperationName(); if (m == 16 && n == 16 && k == 8 && b == 1) return ROCDL::mfma_f32_16x16x8_xf32::getOperationName(); } if (m == 32 && n == 32 && k == 1 && b == 2) return ROCDL::mfma_f32_32x32x1f32::getOperationName(); if (m == 16 && n == 16 && k == 1 && b == 4) return ROCDL::mfma_f32_16x16x1f32::getOperationName(); if (m == 4 && n == 4 && k == 1 && b == 16) return ROCDL::mfma_f32_4x4x1f32::getOperationName(); if (m == 32 && n == 32 && k == 2 && b == 1) return ROCDL::mfma_f32_32x32x2f32::getOperationName(); if (m == 16 && n == 16 && k == 4 && b == 1) return ROCDL::mfma_f32_16x16x4f32::getOperationName(); } if (sourceElem.isF16() && destElem.isF32()) { if (m == 32 && n == 32 && k == 4 && b == 2) return ROCDL::mfma_f32_32x32x4f16::getOperationName(); if (m == 16 && n == 16 && k == 4 && b == 4) return ROCDL::mfma_f32_16x16x4f16::getOperationName(); if (m == 4 && n == 4 && k == 4 && b == 16) return ROCDL::mfma_f32_4x4x4f16::getOperationName(); if (m == 32 && n == 32 && k == 8 && b == 1) return ROCDL::mfma_f32_32x32x8f16::getOperationName(); if (m == 16 && n == 16 && k == 16 && b == 1) return ROCDL::mfma_f32_16x16x16f16::getOperationName(); } if (sourceElem.isBF16() && destElem.isF32() && chipset.minorVersion >= 0x0a) { if (m == 32 && n == 32 && k == 4 && b == 2) return ROCDL::mfma_f32_32x32x4bf16_1k::getOperationName(); if (m == 16 && n == 16 && k == 4 && b == 4) return ROCDL::mfma_f32_16x16x4bf16_1k::getOperationName(); if (m == 4 && n == 4 && k == 4 && b == 16) return ROCDL::mfma_f32_4x4x4bf16_1k::getOperationName(); if (m == 32 && n == 32 && k == 8 && b == 1) return ROCDL::mfma_f32_32x32x8bf16_1k::getOperationName(); if (m == 16 && n == 16 && k == 16 && b == 1) return ROCDL::mfma_f32_16x16x16bf16_1k::getOperationName(); } if (sourceElem.isBF16() && destElem.isF32()) { if (m == 32 && n == 32 && k == 2 && b == 2) return ROCDL::mfma_f32_32x32x2bf16::getOperationName(); if (m == 16 && n == 16 && k == 2 && b == 4) return ROCDL::mfma_f32_16x16x2bf16::getOperationName(); if (m == 4 && n == 4 && k == 2 && b == 16) return ROCDL::mfma_f32_4x4x2bf16::getOperationName(); if (m == 32 && n == 32 && k == 4 && b == 1) return ROCDL::mfma_f32_32x32x4bf16::getOperationName(); if (m == 16 && n == 16 && k == 8 && b == 1) return ROCDL::mfma_f32_16x16x8bf16::getOperationName(); } if (sourceElem.isa() && destElem.isInteger(32)) { if (m == 32 && n == 32 && k == 4 && b == 2) return ROCDL::mfma_i32_32x32x4i8::getOperationName(); if (m == 16 && n == 16 && k == 4 && b == 4) return ROCDL::mfma_i32_16x16x4i8::getOperationName(); if (m == 4 && n == 4 && k == 4 && b == 16) return ROCDL::mfma_i32_4x4x4i8::getOperationName(); if (m == 32 && n == 32 && k == 8 && b == 1) return ROCDL::mfma_i32_32x32x8i8::getOperationName(); if (m == 16 && n == 16 && k == 16 && b == 1) return ROCDL::mfma_i32_16x16x16i8::getOperationName(); if (m == 32 && n == 32 && k == 16 && b == 1 && chipset.minorVersion >= 0x40) return ROCDL::mfma_i32_32x32x16_i8::getOperationName(); if (m == 16 && n == 16 && k == 32 && b == 1 && chipset.minorVersion >= 0x40) return ROCDL::mfma_i32_16x16x32_i8::getOperationName(); } if (sourceElem.isF64() && destElem.isF64() && chipset.minorVersion >= 0x0a) { if (m == 16 && n == 16 && k == 4 && b == 1) return ROCDL::mfma_f64_16x16x4f64::getOperationName(); if (m == 4 && n == 4 && k == 4 && b == 4) return ROCDL::mfma_f64_4x4x4f64::getOperationName(); } return std::nullopt; } namespace { struct MFMAOpLowering : public ConvertOpToLLVMPattern { MFMAOpLowering(LLVMTypeConverter &converter, Chipset chipset) : ConvertOpToLLVMPattern(converter), chipset(chipset) {} Chipset chipset; LogicalResult matchAndRewrite(MFMAOp op, MFMAOpAdaptor adaptor, ConversionPatternRewriter &rewriter) const override { Location loc = op.getLoc(); Type outType = typeConverter->convertType(op.getDestD().getType()); if (chipset.majorVersion != 9 || chipset.minorVersion < 0x08) return op->emitOpError("MFMA only supported on gfx908+"); uint32_t getBlgpField = static_cast(op.getBlgp()); if (op.getNegateA() || op.getNegateB() || op.getNegateC()) { if (chipset.minorVersion < 0x40) return op.emitOpError("negation unsupported on older than gfx840"); getBlgpField |= op.getNegateA() | (op.getNegateB() << 1) | (op.getNegateC() << 2); } Optional maybeIntrinsic = mfmaOpToIntrinsic(op, chipset); if (!maybeIntrinsic.has_value()) return op.emitOpError("no intrinsic matching MFMA size on given chipset"); OperationState loweredOp(loc, *maybeIntrinsic); loweredOp.addTypes(outType); loweredOp.addOperands( {mfmaConcatIfNeeded(rewriter, loc, adaptor.getSourceA()), mfmaConcatIfNeeded(rewriter, loc, adaptor.getSourceB()), adaptor.getDestC(), createI32Constant(rewriter, loc, op.getCbsz()), createI32Constant(rewriter, loc, op.getAbid()), createI32Constant(rewriter, loc, getBlgpField)}); Operation *lowered = rewriter.create(loweredOp); rewriter.replaceOp(op, lowered->getResults()); return success(); } }; struct ConvertAMDGPUToROCDLPass : public impl::ConvertAMDGPUToROCDLBase { ConvertAMDGPUToROCDLPass() = default; void runOnOperation() override { MLIRContext *ctx = &getContext(); FailureOr maybeChipset = Chipset::parse(chipset); if (failed(maybeChipset)) { emitError(UnknownLoc::get(ctx), "Invalid chipset name: " + chipset); return signalPassFailure(); } RewritePatternSet patterns(ctx); LLVMTypeConverter converter(ctx); populateAMDGPUToROCDLConversionPatterns(converter, patterns, *maybeChipset); LLVMConversionTarget target(getContext()); target.addIllegalDialect<::mlir::amdgpu::AMDGPUDialect>(); target.addLegalDialect<::mlir::LLVM::LLVMDialect>(); target.addLegalDialect<::mlir::ROCDL::ROCDLDialect>(); if (failed(applyPartialConversion(getOperation(), target, std::move(patterns)))) signalPassFailure(); } }; } // namespace void mlir::populateAMDGPUToROCDLConversionPatterns(LLVMTypeConverter &converter, RewritePatternSet &patterns, Chipset chipset) { patterns.add(converter); patterns.add< RawBufferOpLowering, RawBufferOpLowering, RawBufferOpLowering, MFMAOpLowering>(converter, chipset); } std::unique_ptr mlir::createConvertAMDGPUToROCDLPass() { return std::make_unique(); }