//===- CodegenUtils.h - Utilities for generating MLIR -----------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This header file defines utilities for generating MLIR. // //===----------------------------------------------------------------------===// #ifndef MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_ #define MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_ #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Complex/IR/Complex.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/SparseTensor/IR/Enums.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/Dialect/Utils/ReshapeOpsUtils.h" #include "mlir/IR/Builders.h" namespace mlir { class Location; class Type; class Value; namespace sparse_tensor { /// Shorthand aliases for the `emitCInterface` argument to `getFunc()`, /// `createFuncCall()`, and `replaceOpWithFuncCall()`. enum class EmitCInterface : bool { Off = false, On = true }; //===----------------------------------------------------------------------===// // ExecutionEngine/SparseTensorUtils helper functions. //===----------------------------------------------------------------------===// /// Converts an overhead storage bitwidth to its internal type-encoding. OverheadType overheadTypeEncoding(unsigned width); /// Converts an overhead storage type to its internal type-encoding. OverheadType overheadTypeEncoding(Type tp); /// Converts the internal type-encoding for overhead storage to an mlir::Type. Type getOverheadType(Builder &builder, OverheadType ot); /// Returns the OverheadType for pointer overhead storage. OverheadType pointerOverheadTypeEncoding(SparseTensorEncodingAttr enc); /// Returns the OverheadType for index overhead storage. OverheadType indexOverheadTypeEncoding(SparseTensorEncodingAttr enc); /// Returns the mlir::Type for pointer overhead storage. Type getPointerOverheadType(Builder &builder, SparseTensorEncodingAttr enc); /// Returns the mlir::Type for index overhead storage. Type getIndexOverheadType(Builder &builder, SparseTensorEncodingAttr enc); /// Convert OverheadType to its function-name suffix. StringRef overheadTypeFunctionSuffix(OverheadType ot); /// Converts an overhead storage type to its function-name suffix. StringRef overheadTypeFunctionSuffix(Type overheadTp); /// Converts a primary storage type to its internal type-encoding. PrimaryType primaryTypeEncoding(Type elemTp); /// Convert PrimaryType to its function-name suffix. StringRef primaryTypeFunctionSuffix(PrimaryType pt); /// Converts a primary storage type to its function-name suffix. StringRef primaryTypeFunctionSuffix(Type elemTp); //===----------------------------------------------------------------------===// // Misc code generators and utilities. //===----------------------------------------------------------------------===// /// Generates a 1-valued attribute of the given type. This supports /// all the same types as `getZeroAttr`; however, unlike `getZeroAttr`, /// for unsupported types we raise `llvm_unreachable` rather than /// returning a null attribute. Attribute getOneAttr(Builder &builder, Type tp); /// Generates the comparison `v != 0` where `v` is of numeric type. /// For floating types, we use the "unordered" comparator (i.e., returns /// true if `v` is NaN). Value genIsNonzero(OpBuilder &builder, Location loc, Value v); /// Computes the shape of destination tensor of a reshape operator. This is only /// used when operands have dynamic shape. The shape of the destination is /// stored into dstShape. void genReshapeDstShape(Location loc, PatternRewriter &rewriter, SmallVectorImpl &dstShape, ArrayRef srcShape, ArrayRef staticDstShape, ArrayRef reassociation); /// Translate indices during a reshaping operation. void translateIndicesArray(OpBuilder &builder, Location loc, ArrayRef reassociation, ValueRange srcIndices, ArrayRef srcShape, ArrayRef dstShape, SmallVectorImpl &dstIndices); /// Returns a function reference (first hit also inserts into module). Sets /// the "_emit_c_interface" on the function declaration when requested, /// so that LLVM lowering generates a wrapper function that takes care /// of ABI complications with passing in and returning MemRefs to C functions. FlatSymbolRefAttr getFunc(ModuleOp module, StringRef name, TypeRange resultType, ValueRange operands, EmitCInterface emitCInterface); /// Creates a `CallOp` to the function reference returned by `getFunc()` in /// the builder's module. func::CallOp createFuncCall(OpBuilder &builder, Location loc, StringRef name, TypeRange resultType, ValueRange operands, EmitCInterface emitCInterface); /// Returns the equivalent of `void*` for opaque arguments to the /// execution engine. Type getOpaquePointerType(OpBuilder &builder); /// Generates an uninitialized temporary buffer of the given size and /// type, but returns it as type `memref` (rather than as type /// `memref<$sz x $tp>`). Value genAlloca(OpBuilder &builder, Location loc, Value sz, Type tp); /// Generates an uninitialized temporary buffer of the given size and /// type, but returns it as type `memref` (rather than as type /// `memref<$sz x $tp>`). Value genAlloca(OpBuilder &builder, Location loc, unsigned sz, Type tp); /// Generates an uninitialized temporary buffer with room for one value /// of the given type, and returns the `memref<$tp>`. Value genAllocaScalar(OpBuilder &builder, Location loc, Type tp); /// Generates a temporary buffer, initializes it with the given contents, /// and returns it as type `memref` (rather than specifying the /// size of the buffer). Value allocaBuffer(OpBuilder &builder, Location loc, ValueRange values); /// Generates code to allocate a buffer of the given type, and zero /// initialize it. If the buffer type has any dynamic sizes, then the /// `sizes` parameter should be as filled by sizesFromPtr(); that way /// we can reuse the genDimSizeCall() results generated by sizesFromPtr(). Value allocDenseTensor(OpBuilder &builder, Location loc, RankedTensorType tensorTp, ValueRange sizes); /// Generates code to deallocate a dense buffer. void deallocDenseTensor(OpBuilder &builder, Location loc, Value buffer); /// Generates the code to read the value from tensor[ivs]. The generated code /// looks like the following and the insertion point after this routine is /// inside the if-then branch behind the assignment to ind. /// if (tensor[ivs] != 0) /// insert_point Value genValueForDense(OpBuilder &builder, Location loc, Value tensor, ValueRange ivs); /// Generates the loop structure to iterate over a dense tensor or a sparse /// tensor constant to support the lowering of dense-to-sparse convert operator. // // The loop to iterate a dense tensor: // for i1 in dim1 // .. // for ik in dimk // val = a[i1,..,ik] // if val != 0 // loop-body // // The loop to iterate a sparse tensor constant: // for i in range(NNZ) // val = values[i] // [i1,..,ik] = indices[i] // loop-body void genDenseTensorOrSparseConstantIterLoop( OpBuilder &builder, Location loc, Value src, unsigned rank, function_ref bodyBuilder); /// Populates given sizes array from dense tensor or sparse tensor constant. void sizesFromSrc(OpBuilder &builder, SmallVectorImpl &sizes, Location loc, Value src); /// Generates a 1D MemRefType with a dynamic size. When withLayout is set, the /// returned memref has a layout has unknown strides and offsets. Otherwise, /// a memref with a standard unit stride zero offset layout is returned. inline MemRefType get1DMemRefType(Type etp, bool withLayout) { auto layout = withLayout ? StridedLayoutAttr::StridedLayoutAttr::get( etp.getContext(), ShapedType::kDynamic, {ShapedType::kDynamic}) : StridedLayoutAttr(); return MemRefType::get(ShapedType::kDynamic, etp, layout); } /// Scans to top of generated loop. Operation *getTop(Operation *op); /// Iterate over a sparse constant, generates constantOp for value and indices. /// E.g., /// sparse<[ [0], [28], [31] ], /// [ (-5.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] > /// => /// %c1 = arith.constant 0 /// %v1 = complex.constant (5.13, 2.0) /// callback({%c1}, %v1) /// /// %c2 = arith.constant 28 /// %v2 = complex.constant (3.0, 4.0) /// callback({%c2}, %v2) /// /// %c3 = arith.constant 31 /// %v3 = complex.constant (5.0, 6.0) /// callback({%c3}, %v3) void foreachInSparseConstant( Location loc, RewriterBase &rewriter, SparseElementsAttr attr, function_ref, Value)> callback); //===----------------------------------------------------------------------===// // Inlined constant generators. // // All these functions are just wrappers to improve code legibility; // therefore, we mark them as `inline` to avoid introducing any additional // overhead due to the legibility. // // TODO: Ideally these should move upstream, so that we don't // develop a design island. However, doing so will involve // substantial design work. For related prior discussion, see // //===----------------------------------------------------------------------===// /// Generates a 0-valued constant of the given type. In addition to /// the scalar types (`ComplexType`, ``FloatType`, `IndexType`, /// `IntegerType`), this also works for `RankedTensorType` and `VectorType` /// (for which it generates a constant `DenseElementsAttr` of zeros). inline Value constantZero(OpBuilder &builder, Location loc, Type tp) { if (auto ctp = tp.dyn_cast()) { auto zeroe = builder.getZeroAttr(ctp.getElementType()); auto zeroa = builder.getArrayAttr({zeroe, zeroe}); return builder.create(loc, tp, zeroa); } return builder.create(loc, tp, builder.getZeroAttr(tp)); } /// Generates a 1-valued constant of the given type. This supports all /// the same types as `constantZero`. inline Value constantOne(OpBuilder &builder, Location loc, Type tp) { if (auto ctp = tp.dyn_cast()) { auto zeroe = builder.getZeroAttr(ctp.getElementType()); auto onee = getOneAttr(builder, ctp.getElementType()); auto zeroa = builder.getArrayAttr({onee, zeroe}); return builder.create(loc, tp, zeroa); } return builder.create(loc, tp, getOneAttr(builder, tp)); } /// Generates a constant of `index` type. inline Value constantIndex(OpBuilder &builder, Location loc, int64_t i) { return builder.create(loc, i); } /// Generates a constant of `i32` type. inline Value constantI32(OpBuilder &builder, Location loc, int32_t i) { return builder.create(loc, i, 32); } /// Generates a constant of `i16` type. inline Value constantI16(OpBuilder &builder, Location loc, int16_t i) { return builder.create(loc, i, 16); } /// Generates a constant of `i8` type. inline Value constantI8(OpBuilder &builder, Location loc, int8_t i) { return builder.create(loc, i, 8); } /// Generates a constant of `i1` type. inline Value constantI1(OpBuilder &builder, Location loc, bool b) { return builder.create(loc, b, 1); } /// Generates a constant of the given `Action`. inline Value constantAction(OpBuilder &builder, Location loc, Action action) { return constantI32(builder, loc, static_cast(action)); } /// Generates a constant of the internal type-encoding for overhead storage. inline Value constantOverheadTypeEncoding(OpBuilder &builder, Location loc, unsigned width) { return constantI32(builder, loc, static_cast(overheadTypeEncoding(width))); } /// Generates a constant of the internal type-encoding for pointer /// overhead storage. inline Value constantPointerTypeEncoding(OpBuilder &builder, Location loc, SparseTensorEncodingAttr enc) { return constantOverheadTypeEncoding(builder, loc, enc.getPointerBitWidth()); } /// Generates a constant of the internal type-encoding for index overhead /// storage. inline Value constantIndexTypeEncoding(OpBuilder &builder, Location loc, SparseTensorEncodingAttr enc) { return constantOverheadTypeEncoding(builder, loc, enc.getIndexBitWidth()); } /// Generates a constant of the internal type-encoding for primary storage. inline Value constantPrimaryTypeEncoding(OpBuilder &builder, Location loc, Type elemTp) { return constantI32(builder, loc, static_cast(primaryTypeEncoding(elemTp))); } /// Generates a constant of the internal dimension level type encoding. inline Value constantDimLevelTypeEncoding(OpBuilder &builder, Location loc, DimLevelType dlt) { return constantI8(builder, loc, static_cast(dlt)); } inline bool isZeroRankedTensorOrScalar(Type type) { auto rtp = type.dyn_cast(); return !rtp || rtp.getRank() == 0; } /// Infers the result type and generates ToPointersOp. Value genToPointers(OpBuilder &builder, Location loc, Value tensor, uint64_t d); /// Infers the result type and generates ToIndicesOp. If the dim is within a COO /// region, the result type is a memref with unknown stride and offset. /// Otherwise, the result type is a memref without any specified layout. Value genToIndices(OpBuilder &builder, Location loc, Value tensor, uint64_t d, uint64_t cooStart); /// Infers the result type and generates ToValuesOp. Value genToValues(OpBuilder &builder, Location loc, Value tensor); /// Generates code to retrieve the values size for the sparse tensor. Value genValMemSize(OpBuilder &builder, Location loc, Value tensor); } // namespace sparse_tensor } // namespace mlir #endif // MLIR_DIALECT_SPARSETENSOR_TRANSFORMS_CODEGENUTILS_H_