//===- Sparsification.cpp - Implementation of sparsification --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements converting sparse tensor types to actual sparse code. // //===----------------------------------------------------------------------===// #include "CodegenEnv.h" #include "CodegenUtils.h" #include "LoopEmitter.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h" #include "mlir/Dialect/Bufferization/IR/Bufferization.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/LLVMIR/LLVMDialect.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Utils/Utils.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/SCF/Transforms/Transforms.h" #include "mlir/Dialect/SparseTensor/IR/SparseTensor.h" #include "mlir/Dialect/SparseTensor/Transforms/Passes.h" #include "mlir/Dialect/SparseTensor/Utils/Merger.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/IR/AffineExprVisitor.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/TensorEncoding.h" #include "llvm/ADT/SmallBitVector.h" using namespace mlir; using namespace mlir::sparse_tensor; //===----------------------------------------------------------------------===// // Declarations //===----------------------------------------------------------------------===// namespace { /// Iteration graph sorting. enum SortMask { kSparseOnly = 0x0, kIncludeDense = 0x1, kIncludeUndef = 0x2, kIncludeAll = 0x3 }; /// A helper class that visits an affine expression and tries to find an /// AffineDimExpr to which the corresponding iterator from a GenericOp matches /// the desired iterator type. class AffineDimFinder : public AffineExprVisitor { public: explicit AffineDimFinder(linalg::GenericOp op) : iterTypes(op.getIteratorTypesArray()) {} void visitDimExpr(AffineDimExpr expr) { if (pickedDim == nullptr || pickIterType == iterTypes[expr.getPosition()]) { pickedDim = expr; } } /// Set the desired iterator type that we want to pick. void setPickedIterType(utils::IteratorType iterType) { pickIterType = iterType; } /// Get the desired AffineDimExpr. AffineDimExpr getDimExpr() const { return pickedDim.cast(); } private: /// The picked AffineDimExpr after visit. AffineExpr pickedDim; /// The iterator type that we want. utils::IteratorType pickIterType; /// The mapping between dim=>iterator type. SmallVector iterTypes; }; } // namespace //===----------------------------------------------------------------------===// // Sparse compiler analysis methods. //===----------------------------------------------------------------------===// /// Determines if affine expression is invariant. static bool isInvariantAffine(AffineExpr a, ArrayRef loopStack, unsigned ldx, bool &atLevel) { switch (a.getKind()) { case AffineExprKind::DimId: { unsigned idx = a.cast().getPosition(); if (idx == ldx) { atLevel = true; // Must be invariant if we are at the level. return true; } bool isInvariant = false; for (unsigned loop : loopStack) { isInvariant = (loop == idx); if (isInvariant) break; } return isInvariant; } case AffineExprKind::Add: case AffineExprKind::Mul: { auto binOp = a.cast(); return isInvariantAffine(binOp.getLHS(), loopStack, ldx, atLevel) && isInvariantAffine(binOp.getRHS(), loopStack, ldx, atLevel); } default: { assert(a.isa()); return true; } } } /// Determines if affine expression is invariant. static bool isInvariantAffine(CodegenEnv &env, AffineExpr a, unsigned ldx, bool &atLevel) { return isInvariantAffine(a, env.getLoopCurStack(), ldx, atLevel); } /// Helper method to construct a permuted dimension ordering /// that adheres to the given topological sort. static AffineMap permute(CodegenEnv &env, AffineMap m) { assert(m.getNumDims() + env.merger().getNumFilterLoops() == env.topSortSize() && "size mismatch"); // Construct the inverse of `m`; to avoid the asymptotic complexity // of calling `m.getPermutedPosition` repeatedly. SmallVector perm; unsigned numResults = m.getNumResults(); BitVector worklist(numResults, true); unsigned loopDepth = 1; // Construct the permutation. while (worklist.any() && loopDepth <= env.topSortSize()) { unsigned preSize = perm.size(); for (auto dim : worklist.set_bits()) { bool atLevel = false; if (m.getResult(dim).isa() || (isInvariantAffine(m.getResult(dim), env.getTopSortSlice(0, loopDepth), env.topSortAt(loopDepth - 1), atLevel) && atLevel)) { // If the matching affine is constant expression or just become // invariant. We can visit the dimension now without breaking the // topSort constraint. perm.push_back(dim); } } // Removes resolved dimension. for (unsigned i = preSize, e = perm.size(); i < e; i++) worklist.reset(perm[i]); // Tries to entering the next loop level. loopDepth += 1; } assert(perm.size() == numResults); return AffineMap::getPermutationMap(perm, env.op().getContext()); } /// Helper method to inspect affine expressions. Rejects cases where the /// same index is used more than once. Also rejects compound affine /// expressions in sparse dimensions. /// filterIdx stores the current filter loop idx should be used for the next /// compound affine sparse level, and it will be incremented by one when /// used. static bool findAffine(Merger &merger, unsigned tensor, unsigned dim, AffineExpr a, DimLevelType dlt, unsigned &filterLdx, bool setLvlFormat = true) { switch (a.getKind()) { case AffineExprKind::DimId: { unsigned idx = a.cast().getPosition(); if (!isUndefDLT(merger.getDimLevelType(tensor, idx))) return false; // used more than once if (setLvlFormat) merger.setDimAndDimLevelType(tensor, idx, dim, dlt); return true; } case AffineExprKind::Add: case AffineExprKind::Mul: case AffineExprKind::Constant: { if (!isDenseDLT(dlt) && setLvlFormat) { assert(isUndefDLT(merger.getDimLevelType(tensor, filterLdx))); // Use a filter loop for sparse affine expression. merger.setDimAndDimLevelType(tensor, filterLdx++, dim, dlt); } if (auto binOp = a.dyn_cast()) { // We do not set dim level format for affine expresssion like d0 + d1 on // either loop index at d0 or d1. // We continue the recursion merely to check whether current affine is // admissible or not. return findAffine(merger, tensor, dim, binOp.getLHS(), dlt, filterLdx, false) && findAffine(merger, tensor, dim, binOp.getRHS(), dlt, filterLdx, false); } // Falls through when it is a constant Affine return true; } default: return false; } } /// Get the total number of compound affine expressions in affineMap that are /// attached to the given tensor. For the following inputs: /// /// affineMap = (d0, d1, d2) => (d0 + d1, d2) /// tensor = ["compressed", "compressed"] /// /// Returns 1 (because the first level is compressed and its corresponding /// affineMap is d0 + d1) static unsigned getNumCompoundAffineOnSparseDims(AffineMap affineMap, Value tensor) { unsigned num = 0; auto enc = getSparseTensorEncoding(tensor.getType()); if (enc) { ArrayRef exps = affineMap.getResults(); for (unsigned rank = 0; rank < exps.size(); rank++) { auto aidx = toOrigDim(enc, rank); auto affine = exps[aidx]; if (!affine.isa()) if (!isDenseDLT(getDimLevelType(enc, rank))) num++; } } return num; } /// Get the total number of compound affine expressions attached on a sparse /// level in the given GenericOp. static unsigned getNumCompoundAffineOnSparseDims(linalg::GenericOp op) { unsigned num = 0; for (OpOperand &t : op->getOpOperands()) num += getNumCompoundAffineOnSparseDims(op.getMatchingIndexingMap(&t), t.get()); return num; } /// Helper method to inspect sparse encodings in the tensor types. /// Fills the per-dimension sparsity information for all tensors. /// Returns true if the sparse annotations and affine subscript /// expressions of all tensors are admissible. Returns false if /// no annotations are found or inadmissible constructs occur. static bool findSparseAnnotations(CodegenEnv &env) { bool annotated = false; unsigned filterLdx = env.merger().getFilterLoopStartingIdx(); for (OpOperand &t : env.op()->getOpOperands()) { auto map = env.op().getMatchingIndexingMap(&t); auto enc = getSparseTensorEncoding(t.get().getType()); if (enc) annotated = true; assert(map.getNumResults() == env.op().getRank(&t)); for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { unsigned tensor = t.getOperandNumber(); AffineExpr a = map.getResult(toOrigDim(enc, d)); if (!findAffine(env.merger(), tensor, d, a, getDimLevelType(enc, d), filterLdx)) return false; // inadmissible affine expression } } assert(filterLdx == env.merger().getNumLoops()); return annotated; } /// A helper to compute a topological sort. O(n^2) time complexity /// as we use adj matrix for the graph. /// The sorted result will put the first Reduction iterator to the /// latest possible index. static bool topSortOptimal(CodegenEnv &env, unsigned n, ArrayRef iteratorTypes, std::vector &inDegree, std::vector> &adjM) { std::vector redIt; // reduce iterator with 0 degree std::vector parIt; // parallel iterator with 0 degree std::vector filterIt; // filter loop with 0 degree for (unsigned i = 0; i < n; i++) { if (inDegree[i] == 0) { if (env.merger().isFilterLoop(i)) filterIt.push_back(i); else if (linalg::isReductionIterator(iteratorTypes[i])) redIt.push_back(i); else parIt.push_back(i); } } while (!redIt.empty() || !parIt.empty() || !filterIt.empty()) { // We always choose in order of filter loop -> parallel loop -> reduction // loop because // 1. Putting reduction loop early might make the loop sequence // inadmissible. // 2. Filter loops should be put as early as possible for better // performance, since only one (if any) iteration will carry the // computation. E.g., for (1 to N) // for (1 to M) // for (1 to K) // if (xxx) // O(X) computation => O(NMK+NMX) time complexity // // By putting the filter loop one level up, we got // // for (1 to N) // for (1 to K) // if (xxx) // for (1 to M) // O(X) computation => O(NK+NMX) time complexity auto &it = !filterIt.empty() ? filterIt : (!parIt.empty() ? parIt : redIt); auto src = it.back(); env.topSortPushBack(src); it.pop_back(); // Update in-degree, and push 0-degree node into worklist. for (unsigned dst = 0; dst < n; dst++) { if (adjM[src][dst] && --inDegree[dst] == 0) { if (env.merger().isFilterLoop(dst)) filterIt.push_back(dst); else if (linalg::isReductionIterator(iteratorTypes[dst])) redIt.push_back(dst); else parIt.push_back(dst); } } } return env.topSortSize() == n; } /// Helper method to add all constraints from the indices in one affine /// expression before all indices in the other affine expression. For /// example i0+i1 < i2+i3+1 yields i0 i0 < fidx, i1 < fidx. /// The affine expression `b` is empty iff `tidx` have a value, leading to /// tidx < a = (i0 + i1) => tidx < i0, tidx < i1. static void addAffineOrderings(std::vector> &adjM, std::vector &inDegree, AffineExpr a, AffineExpr b, Optional fidx, Optional tidx) { if (!a && !b) { // Recursion leaf. assert(fidx && tidx); unsigned f = *fidx, t = *tidx; if (!adjM[f][t]) { adjM[f][t] = true; inDegree[t]++; } return; } // Picks an affine expression and expand (recurse into) it. auto toExpand = a ? a : b; switch (toExpand.getKind()) { case AffineExprKind::DimId: { auto idx = toExpand.cast().getPosition(); if (toExpand == a) addAffineOrderings(adjM, inDegree, AffineExpr(), b, idx, tidx); else // toExpand == b addAffineOrderings(adjM, inDegree, a, AffineExpr(), fidx, idx); break; } case AffineExprKind::Add: case AffineExprKind::Mul: { auto binOp = toExpand.cast(); if (toExpand == a) { addAffineOrderings(adjM, inDegree, binOp.getLHS(), b, fidx, tidx); addAffineOrderings(adjM, inDegree, binOp.getRHS(), b, fidx, tidx); } else { addAffineOrderings(adjM, inDegree, a, binOp.getLHS(), fidx, tidx); addAffineOrderings(adjM, inDegree, a, binOp.getRHS(), fidx, tidx); } break; } default: break; } } static void tryLoosenAffineDenseConstraints(linalg::GenericOp op, Optional &fldx, AffineExpr &fa, Optional &tldx, AffineExpr &ta) { // We use a heuristic here to only pick one dim expression from each // compound affine expression to establish the order between two dense // dimensions. if (!tldx) { AffineDimFinder finder(op); // NOTE: The ordering can only be loosen when the destination level is // dense (when !tldx), for [dense, sparse] -> (d0 + d1, d2), we still // require both d0 < d2 and d1 < d2 to ensure correct ordering (i.e., // no ordering like d0->d2->d1). // TODO: this is obviously a sub optimal solution. if (!fldx && !fa.isa()) { // Heuristic: we prefer parallel loop for lhs to reduce the chance // we add reduce < parallel ordering. finder.setPickedIterType(utils::IteratorType::parallel); finder.walkPostOrder(fa); fa = finder.getDimExpr(); fldx = finder.getDimExpr().getPosition(); } if (!ta.isa()) { // Heuristic: we prefer reduction loop for rhs to reduce the chance // addint reduce < parallel ordering. finder.setPickedIterType(utils::IteratorType::reduction); finder.walkPostOrder(ta); ta = finder.getDimExpr(); tldx = finder.getDimExpr().getPosition(); } } } /// Computes a topologically sorted iteration graph for the linalg /// operation. Ensures all tensors are visited in natural index order. This /// is essential for sparse storage formats since these only support access /// along fixed dimensions. Even for dense storage formats, however, the /// natural index order yields innermost unit-stride access with better /// spatial locality. static bool computeIterationGraph(CodegenEnv &env, unsigned mask, OpOperand *skip = nullptr) { // Set up an n x n from/to adjacency matrix of the iteration graph // for the implicit loop indices i_0 .. i_n-1. unsigned n = env.merger().getNumLoops(); std::vector> adjM(n, std::vector(n, false)); std::vector inDegree(n, 0); // in-degree of each node. auto iteratorTypes = env.op().getIteratorTypesArray(); // Iterate over the indexing maps of every tensor in the tensor expression. for (OpOperand &t : env.op()->getOpOperands()) { // Get map and encoding. auto map = env.op().getMatchingIndexingMap(&t); auto enc = getSparseTensorEncoding(t.get().getType()); assert(map.getNumDims() + getNumCompoundAffineOnSparseDims(env.op()) == n); // Skip dense tensor constraints when not requested. if (!(mask & SortMask::kIncludeDense) && !enc) continue; // Each tensor expression and optional dimension ordering (row-major // by default) puts an ordering constraint on the loop indices. For // example, the tensor expresion A_ijk forces the ordering i < j < k // on the loop indices if no explicit dimension ordering is given. for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { AffineExpr ta = map.getResult(toOrigDim(enc, d)); Optional tldx = env.merger().getLoopIdx(t.getOperandNumber(), d); // Filter loops should be constructed after all the dependent loops, // i.e., d0 + d1 < filter_loop(d0 + d1) if (tldx && env.merger().isFilterLoop(*tldx)) { assert(!ta.isa() && !isDenseDLT(getDimLevelType(enc, d))); addAffineOrderings(adjM, inDegree, ta, AffineExpr(), std::nullopt, tldx); // Now that the ordering of affine expression is captured by filter // loop idx, we only need to ensure the affine ordering against filter // loop. Thus, we reset the affine express to nil here to mark it as // resolved. ta = AffineExpr(); } // Skip tensor during cycle resolution, though order between filter loop // and dependent loops need to be guaranteed unconditionally. if (&t == skip) continue; if (d > 0) { AffineExpr fa = map.getResult(toOrigDim(enc, d - 1)); Optional fldx = env.merger().getLoopIdx(t.getOperandNumber(), d - 1); // Applying order constraints on every pair of dimExpr between two // compound affine expressions can sometime too strict: // E.g, for [dense, dense] -> (d0 + d1, d2 + d3). // It is totally fine to have loop sequence d0->d2->d1->d3 instead of // requiring d0 < d2, d1 < d2, d0 < d3, d1 < d3. if (!(mask & SortMask::kIncludeDense)) tryLoosenAffineDenseConstraints(env.op(), fldx, fa, tldx, ta); // (d0 + d1) < (d2 + d3), or // filter_loop_d-1 < (d2 + d3), or // (d0 + d1) < filter_loop_d, or // filter_loop_d-1 < filter_loop_d depending on whether fa/ta is reset // above. addAffineOrderings(adjM, inDegree, fa, ta, fldx, tldx); } } // Push unrelated loops into sparse iteration space, so these // will be skipped more often. if (mask & SortMask::kIncludeUndef) { unsigned tensor = t.getOperandNumber(); for (unsigned i = 0; i < n; i++) if (isCompressedDLT(env.dlt(tensor, i)) || isSingletonDLT(env.dlt(tensor, i))) { for (unsigned j = 0; j < n; j++) if (isUndefDLT(env.dlt(tensor, j))) { adjM[i][j] = true; inDegree[j]++; } } else { assert(isDenseDLT(env.dlt(tensor, i)) || isUndefDLT(env.dlt(tensor, i))); } } } // Topologically sort the iteration graph to determine loop order. // Report failure for a cyclic iteration graph. env.topSortClear(n); return topSortOptimal(env, n, iteratorTypes, inDegree, adjM); } /// Returns true if tensor materializes uninitialized into the computation. static bool isMaterializing(Value val) { return val.getDefiningOp() || val.getDefiningOp(); } /// Returns true when the tensor expression is admissible for codegen. /// Since all sparse input tensors are admissible, we just need to check /// whether the out tensor in the tensor expression codegen is admissible. /// Sets `sparseOut` to the tensor and `outerParNest` to the outer injective /// nesting depth when a "truly dynamic" sparse tensor output occurs. static bool isAdmissibleTensorExp(CodegenEnv &env, unsigned exp, OpOperand **sparseOut, unsigned *outerParNest) { // We reject any expression that makes a reduction from `-outTensor`, as those // expressions create a dependency between the current iteration (i) and the // previous iteration (i-1). It would require iterating over the whole // coordinate space, which prevent exploiting sparsity for faster code. for (utils::IteratorType it : env.op().getIteratorTypesArray()) { if (it == utils::IteratorType::reduction) { if (env.merger().hasNegateOnOut(exp)) return false; break; } } OpOperand *lhs = env.op().getDpsInitOperand(0); unsigned tensor = lhs->getOperandNumber(); auto enc = getSparseTensorEncoding(lhs->get().getType()); // An non-annotated output tensor is assumed dense, and becomes a random // access n-dim memref. Admissible since insertions cannot occur. if (!enc) return true; // An all-dense annotated "sparse" output tensor becomes a linearized random // access 1-dim memref. Also admissible since insertions cannot occur. bool allDense = true; unsigned numLoops = env.merger().getNumLoops(); // numNativeLoops + numFilterLoops for (unsigned i = 0; i < env.merger().getNumLoops(); i++) if (isCompressedDLT(env.dlt(tensor, i)) || isSingletonDLT(env.dlt(tensor, i))) { allDense = false; break; } else { assert(isDenseDLT(env.dlt(tensor, i)) || isUndefDLT(env.dlt(tensor, i))); } if (allDense) return true; // TODO: support compound affine expression on sparse output. if (getNumCompoundAffineOnSparseDims(env.op().getMatchingIndexingMap(lhs), lhs->get()) != 0) return false; // A tensor expression with a sparse output tensor that changes its values // but not its nonzero structure, an operation called "simply dynamic" in // [Bik96,Ch9], is also admissible without special env. if (env.merger().isSingleCondition(tensor, exp)) return true; // Accept "truly dynamic" if the output tensor materializes uninitialized // into the computation and insertions occur in lexicographic index order. if (isMaterializing(lhs->get())) { auto iteratorTypes = env.op().getIteratorTypesArray(); unsigned nest = 0; for (unsigned i = 0; i < numLoops; i++) { if (!env.merger().isFilterLoop(env.topSortAt(i))) { // We only count non-filter loops as filter loops should be considered // as a special type of parallel loops. if (linalg::isReductionIterator(iteratorTypes[env.topSortAt(i)])) break; // terminate at first reduction nest++; } } // Determine admissible dynamic insertion situations: // (1) fully injective, since there are no reductions, // (2) admissible 1-d expansion in innermost dimension. if (nest >= env.op().getRank(lhs) - 1) { *sparseOut = lhs; *outerParNest = nest; return true; } } return false; } //===----------------------------------------------------------------------===// // Sparse compiler synthesis methods (statements and expressions). //===----------------------------------------------------------------------===// /// Local bufferization of all dense and sparse data structures. static void genBuffers(CodegenEnv &env, OpBuilder &builder) { linalg::GenericOp op = env.op(); Location loc = op.getLoc(); assert(op.getNumOperands() == op.getNumDpsInputs() + 1); env.emitter().initializeLoopEmit( builder, loc, /// Generates buffer for the output tensor. /// Note that all sparse kernels assume that when all elements are written /// to (viz. x(i) = y(i) * z(i)), the output buffer is already initialized /// to all zeroes and only nonzeroes values are computed and written out. /// For updates (viz. x(i) += y(i) * z(i)), only nonzeroes values are used /// for the updates and no assumption on the original contents of the /// output buffer is necessary. [&op](OpBuilder &builder, Location loc, Value memref, Value tensor) -> Value { // Must not be a sparse tensor. assert(!getSparseTensorEncoding(tensor.getType())); // Two output tensor references should point to the same object. OpOperand *lhs = op.getDpsInitOperand(0); assert(lhs->get() == tensor); // An output tensor can simply materialize from the buffer of the tensor // that appears in the outs() clause. For updates, this has the // advantage that only the nonzero value are involved in the // computation, keeping the operation O(nnz). In all other cases, we are // forced to zero out the buffer to enforce the assumption above, which // may negatively impact running complexity (viz. O(n^2 + nnz) vs. // O(nnz) for matrices). // TODO: use better analysis to avoid zeroing out the buffer? bool isInit = op.isInitTensor(lhs); Value init = memref; if (!isInit) { Value zero = constantZero(builder, loc, getElementTypeOrSelf(tensor.getType())); builder.create(loc, ValueRange{zero}, ValueRange{init}); } return init; }); } /// Generates index for load/store on sparse tensor. static Value genIndex(CodegenEnv &env, OpOperand *t) { auto map = env.op().getMatchingIndexingMap(t); auto enc = getSparseTensorEncoding(t->get().getType()); AffineExpr a = map.getResult(toOrigDim(enc, map.getNumResults() - 1)); assert(a.getKind() == AffineExprKind::DimId); unsigned idx = a.cast().getPosition(); return env.getLoopIdxValue(idx); } /// Generates subscript for load/store on a dense or sparse tensor. static Value genSubscript(CodegenEnv &env, OpBuilder &builder, OpOperand *t, SmallVectorImpl &args) { linalg::GenericOp op = env.op(); unsigned tensor = t->getOperandNumber(); auto map = op.getMatchingIndexingMap(t); auto enc = getSparseTensorEncoding(t->get().getType()); unsigned rank = map.getNumResults(); if (enc) { Value pidx = env.emitter().getPidxs()[tensor].back(); assert(pidx); args.push_back(pidx); // position index } else { for (unsigned d = 0; d < rank; d++) { AffineExpr a = map.getResult(d); args.push_back(env.emitter().genAffine(builder, a, op.getLoc())); } } return env.emitter().getValBuffer()[tensor]; } /// Generates insertion code to implement dynamic tensor load. static Value genInsertionLoad(CodegenEnv &env, OpBuilder &builder, OpOperand *t) { linalg::GenericOp op = env.op(); Location loc = op.getLoc(); // Direct lexicographic index order, tensor loads as zero. if (!env.isExpand()) { Type tp = getElementTypeOrSelf(t->get().getType()); return constantZero(builder, loc, tp); } // Load from expanded access pattern. Value index = genIndex(env, t); return builder.create(loc, env.getExpandValues(), index); } /// Generates insertion code to implement dynamic tensor load for reduction. static Value genInsertionLoadReduce(CodegenEnv &env, OpBuilder &builder, OpOperand *t) { linalg::GenericOp op = env.op(); Location loc = op.getLoc(); Value identity = env.getCustomRedId(); // Direct lexicographic index order, tensor loads as identity. if (!env.isExpand()) return identity; // Load from expanded access pattern if filled, identity otherwise. Value values = env.getExpandValues(); Value filled = env.getExpandFilled(); Value index = genIndex(env, t); Value isFilled = builder.create(loc, filled, index); Value valAtIndex = builder.create(loc, values, index); return builder.create(loc, isFilled, valAtIndex, identity); } /// Generates insertion code to implement dynamic tensor store. static void genInsertionStore(CodegenEnv &env, OpBuilder &builder, OpOperand *t, Value rhs) { linalg::GenericOp op = env.op(); Location loc = op.getLoc(); // Direct insertion in lexicographic index order. if (!env.isExpand()) { unsigned rank = op.getRank(t); SmallVector indices; for (unsigned i = 0; i < rank; i++) { assert(env.emitter().getLoopIV(i)); indices.push_back(env.emitter().getLoopIV(i)); } Value chain = env.getInsertionChain(); env.updateInsertionChain( builder.create(loc, rhs, chain, indices)); return; } // Generates insertion code along expanded access pattern. // if (!expFilled[i]) then // expFilled[i] = true // expAdded[inserts++] = i // endif // values[i] = rhs Value values = env.getExpandValues(); Value filled = env.getExpandFilled(); Value added = env.getExpandAdded(); Value count = env.getExpandCount(); Value index = genIndex(env, t); Value fval = constantI1(builder, loc, false); Value tval = constantI1(builder, loc, true); // If statement. Value isFilled = builder.create(loc, filled, index); Value cond = builder.create(loc, arith::CmpIPredicate::eq, isFilled, fval); scf::IfOp ifOp = builder.create(loc, builder.getIndexType(), cond, /*else=*/true); // True branch. builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); builder.create(loc, tval, filled, index); builder.create(loc, index, added, count); Value one = constantIndex(builder, loc, 1); Value add = builder.create(loc, count, one); builder.create(loc, add); // False branch. builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); builder.create(loc, count); builder.setInsertionPointAfter(ifOp); // Value assignment. env.updateExpandCount(ifOp.getResult(0)); builder.create(loc, rhs, values, index); } /// Generates a load on a dense or sparse tensor. static Value genTensorLoad(CodegenEnv &env, OpBuilder &builder, unsigned exp) { // Test if the load was hoisted to a higher loop nest. Value val = env.exp(exp).val; if (val) return val; // Load during insertion. linalg::GenericOp op = env.op(); OpOperand *t = &op->getOpOperand(env.exp(exp).tensor); if (env.isSparseOutput(t)) { if (env.isCustomReduc()) return genInsertionLoadReduce(env, builder, t); return genInsertionLoad(env, builder, t); } // Actual load. SmallVector args; Value ptr = genSubscript(env, builder, t, args); return builder.create(op.getLoc(), ptr, args); } /// Generates a store on a dense or sparse tensor. static void genTensorStore(CodegenEnv &env, OpBuilder &builder, unsigned exp, Value rhs) { linalg::GenericOp op = env.op(); Location loc = op.getLoc(); // Test if this is a scalarized reduction. if (env.isReduc()) { env.updateReduc(rhs); return; } // Store during insertion. OpOperand *t = op.getDpsInitOperand(0); if (env.isSparseOutput(t)) { if (!rhs) { // Only unary and binary are allowed to return uninitialized rhs // to indicate missing output. assert(env.exp(exp).kind == kUnary || env.exp(exp).kind == kBinary); } else if (env.exp(exp).kind == kSelect) { // Select operation insertion. Value chain = env.getInsertionChain(); scf::IfOp ifOp = builder.create(loc, chain.getType(), rhs, /*else=*/true); builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); // Existing value was preserved to be used here. assert(env.exp(exp).val); Value v0 = env.exp(exp).val; genInsertionStore(env, builder, t, v0); env.exp(exp).val = Value(); // Yield modified insertion chain along true branch. Value mchain = env.getInsertionChain(); builder.create(op.getLoc(), mchain); // Yield original insertion chain along false branch. builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); builder.create(loc, chain); // Done with if statement. env.updateInsertionChain(ifOp->getResult(0)); builder.setInsertionPointAfter(ifOp); } else { genInsertionStore(env, builder, t, rhs); } return; } // Actual store. SmallVector args; Value ptr = genSubscript(env, builder, t, args); builder.create(loc, rhs, ptr, args); } /// Generates an invariant value. inline static Value genInvariantValue(CodegenEnv &env, unsigned exp) { return env.exp(exp).val; } /// Generates an index value. inline static Value genIndexValue(CodegenEnv &env, unsigned idx) { return env.getLoopIdxValue(idx); } /// Semi-ring branches are simply inlined by the sparse compiler. Prior /// analysis has verified that all computations are "local" to the inlined /// branch or otherwise invariantly defined outside the loop nest, with the /// exception of index computations, which need to be relinked to actual /// inlined cloned code. static Value relinkBranch(CodegenEnv &env, RewriterBase &rewriter, Block *block, Value e, unsigned ldx) { if (Operation *def = e.getDefiningOp()) { if (auto indexOp = dyn_cast(def)) return genIndexValue(env, indexOp.getDim()); if (def->getBlock() == block) { for (unsigned i = 0, n = def->getNumOperands(); i < n; i++) def->setOperand( i, relinkBranch(env, rewriter, block, def->getOperand(i), ldx)); } } return e; } /// Recursively generates tensor expression. static Value genExp(CodegenEnv &env, RewriterBase &rewriter, unsigned exp, unsigned ldx) { linalg::GenericOp op = env.op(); Location loc = op.getLoc(); if (exp == -1u) return Value(); if (env.exp(exp).kind == Kind::kTensor) return genTensorLoad(env, rewriter, exp); if (env.exp(exp).kind == Kind::kInvariant) return genInvariantValue(env, exp); if (env.exp(exp).kind == Kind::kIndex) return genIndexValue(env, env.exp(exp).index); if (env.exp(exp).kind == Kind::kReduce) env.startCustomReduc(exp); // enter custom Value v0 = genExp(env, rewriter, env.exp(exp).children.e0, ldx); Value v1 = genExp(env, rewriter, env.exp(exp).children.e1, ldx); Value ee = env.merger().buildExp(rewriter, loc, exp, v0, v1); if (ee && (env.exp(exp).kind == Kind::kUnary || env.exp(exp).kind == Kind::kBinary || env.exp(exp).kind == Kind::kBinaryBranch || env.exp(exp).kind == Kind::kReduce || env.exp(exp).kind == Kind::kSelect)) ee = relinkBranch(env, rewriter, ee.getParentBlock(), ee, ldx); if (env.exp(exp).kind == Kind::kReduce) env.endCustomReduc(); // exit custom if (env.exp(exp).kind == kSelect) { assert(!env.exp(exp).val); env.exp(exp).val = v0; // Preserve value for later use. } return ee; } /// Hoists loop invariant tensor loads for which indices have been exhausted. static void genInvariants(CodegenEnv &env, OpBuilder &builder, unsigned exp, unsigned ldx, bool atStart) { if (exp == -1u) return; if (env.exp(exp).kind == Kind::kTensor) { // Inspect tensor indices. bool atLevel = ldx == -1u; linalg::GenericOp op = env.op(); OpOperand &t = op->getOpOperand(env.exp(exp).tensor); auto map = op.getMatchingIndexingMap(&t); auto enc = getSparseTensorEncoding(t.get().getType()); for (unsigned d = 0, rank = map.getNumResults(); d < rank; d++) { AffineExpr a = map.getResult(toOrigDim(enc, d)); Optional sldx = env.merger().getLoopIdx(t.getOperandNumber(), d); if (sldx && env.merger().isFilterLoop(*sldx)) { if (!env.getLoopIdxValue(*sldx)) // The filter loops has not been constructed. return; if (*sldx == ldx) atLevel = true; } else if (!isInvariantAffine(env, a, ldx, atLevel)) return; // still in play } // All exhausted at this level (atLevel denotes exactly at this level). if (!atLevel) return; OpOperand *lhs = op.getDpsInitOperand(0); if (lhs == &t) { // Start or end a scalarized reduction if (atStart) { Value load = env.isCustomReduc() ? env.getCustomRedId() : genTensorLoad(env, builder, exp); env.startReduc(exp, load); } else { genTensorStore(env, builder, exp, env.endReduc()); } } else { // Start or end loop invariant hoisting of a tensor load. env.exp(exp).val = atStart ? genTensorLoad(env, builder, exp) : Value(); } } else if (env.exp(exp).kind != Kind::kInvariant && env.exp(exp).kind != Kind::kIndex) { // Traverse into the binary operations. Note that we only hoist // tensor loads, since subsequent MLIR/LLVM passes know how to // deal with all other kinds of derived loop invariants. if (env.exp(exp).kind == Kind::kReduce) env.startCustomReduc(exp); // enter custom unsigned e0 = env.exp(exp).children.e0; unsigned e1 = env.exp(exp).children.e1; genInvariants(env, builder, e0, ldx, atStart); genInvariants(env, builder, e1, ldx, atStart); if (env.exp(exp).kind == Kind::kReduce) env.endCustomReduc(); // exit custom } } /// Generates an expanded access pattern in innermost dimension. static void genExpand(CodegenEnv &env, OpBuilder &builder, unsigned at, bool atStart) { linalg::GenericOp op = env.op(); OpOperand *lhs = op.getDpsInitOperand(0); if (!env.atExpandLevel(lhs, op.getRank(lhs), at)) return; // not needed at this level assert(!env.isReduc()); // Generate start or end of an expanded access pattern. Note that because // an expension does not rely on the ongoing contents of the sparse storage // scheme, we can use the original tensor as incoming SSA value (which // simplifies codegen a bit). If expansion on the actual contents is ever // needed, we will need to use the SSA value in the insertion chain instead. Value tensor = lhs->get(); Location loc = op.getLoc(); if (atStart) { auto dynShape = {ShapedType::kDynamic}; Type etp = tensor.getType().cast().getElementType(); Type t1 = MemRefType::get(dynShape, etp); Type t2 = MemRefType::get(dynShape, builder.getI1Type()); Type t3 = MemRefType::get(dynShape, builder.getIndexType()); Type t4 = builder.getIndexType(); auto r = builder.create(loc, TypeRange({t1, t2, t3, t4}), tensor); assert(r.getNumResults() == 4); env.startExpand(r.getResult(0), r.getResult(1), r.getResult(2), r.getResult(3)); } else { SmallVector indices; for (unsigned i = 0; i < at; i++) indices.push_back(env.emitter().getLoopIV(i)); Value values = env.getExpandValues(); Value filled = env.getExpandFilled(); Value added = env.getExpandAdded(); Value count = env.getExpandCount(); Value chain = env.getInsertionChain(); Value compress = builder.create(loc, values, filled, added, count, chain, indices); env.updateInsertionChain(compress); env.endExpand(); } } /// Returns parallelization strategy. Any implicit loop in the Linalg /// operation that is marked "parallel" is a candidate. Whether it is actually /// converted to a parallel operation depends on the requested strategy. static bool isParallelFor(CodegenEnv &env, bool isOuter, bool isSparse) { // Reject parallelization of sparse output. if (env.hasSparseOutput()) return false; // Parallel loops on tensor expansion can cause data races. if (env.isExpand()) return false; // Inspect strategy. switch (env.options().parallelizationStrategy) { case SparseParallelizationStrategy::kNone: return false; case SparseParallelizationStrategy::kDenseOuterLoop: return isOuter && !isSparse; case SparseParallelizationStrategy::kAnyStorageOuterLoop: return isOuter; case SparseParallelizationStrategy::kDenseAnyLoop: return !isSparse; case SparseParallelizationStrategy::kAnyStorageAnyLoop: return true; } llvm_unreachable("unexpected parallelization strategy"); } /// Generates a for-loop on a single index. static Operation *genFor(CodegenEnv &env, OpBuilder &builder, bool isOuter, bool isInner, unsigned idx, ArrayRef tids, ArrayRef dims) { linalg::GenericOp op = env.op(); Location loc = op.getLoc(); auto iteratorTypes = op.getIteratorTypesArray(); bool isSparse = llvm::any_of(tids, [idx, &env](size_t tid) { return isCompressedDLT(env.dlt(tid, idx)) || isSingletonDLT(env.dlt(tid, idx)); }); bool isParallel = isParallelFor(env, isOuter, isSparse); Operation *loop = *env.genLoopBoundary([&](MutableArrayRef reduc) { if (env.merger().isFilterLoop(idx)) { size_t tid = tids.front(), dim = dims.front(); // tids/dims must only have one value because filter loops only // corresponding to the one and only sparse tensor level. assert(isSparse && tids.size() == 1 && dims.size() == 1); OpOperand *t = &op->getOpOperand(tid); auto enc = getSparseTensorEncoding(t->get().getType()); // Retrieves the affine expression for the filter loop. AffineExpr a = op.getMatchingIndexingMap(t).getResult(toOrigDim(enc, dim)); return env.emitter().enterFilterLoopOverTensorAtDim(builder, loc, tid, dim, a, reduc); } return env.emitter().enterLoopOverTensorAtDim(builder, loc, tids, dims, reduc, isParallel); }); assert(loop); return loop; } /// Emit a while-loop for co-iteration over multiple indices. static Operation *genWhile(CodegenEnv &env, OpBuilder &builder, unsigned idx, bool needsUniv, ArrayRef tids, ArrayRef dims) { Operation *loop = *env.genLoopBoundary([&](MutableArrayRef reduc) { // Construct the while-loop with a parameter for each // index. return env.emitter().enterCoIterationOverTensorsAtDims( builder, env.op().getLoc(), tids, dims, needsUniv, reduc); }); assert(loop); return loop; } /// Generates a for-loop or a while-loop, depending on whether it implements /// singleton iteration or co-iteration over the given conjunction. static Operation *genLoop(CodegenEnv &env, OpBuilder &builder, unsigned at, bool needsUniv, ArrayRef tids, ArrayRef dims, bool isFor) { assert(tids.size() == dims.size()); unsigned idx = env.topSortAt(at); if (isFor) { bool isOuter = at == 0; bool isInner = at == env.topSortSize() - 1; return genFor(env, builder, isOuter, isInner, idx, tids, dims); } return genWhile(env, builder, idx, needsUniv, tids, dims); } /// Generates the induction structure for a while-loop. static void finalizeWhileOp(CodegenEnv &env, OpBuilder &builder, unsigned idx, bool needsUniv, BitVector &induction, scf::WhileOp whileOp) { Location loc = env.op().getLoc(); // Finalize each else branch of all if statements. if (env.isReduc() || env.isExpand() || env.getInsertionChain()) { while (auto ifOp = dyn_cast_or_null( builder.getInsertionBlock()->getParentOp())) { unsigned y = 0; SmallVector yields; if (env.isReduc()) { yields.push_back(env.getReduc()); env.updateReduc(ifOp.getResult(y++)); } if (env.isExpand()) { yields.push_back(env.getExpandCount()); env.updateExpandCount(ifOp->getResult(y++)); } if (env.getInsertionChain()) { yields.push_back(env.getInsertionChain()); env.updateInsertionChain(ifOp->getResult(y++)); } assert(y == yields.size()); builder.create(loc, yields); builder.setInsertionPointAfter(ifOp); } } builder.setInsertionPointToEnd(&whileOp.getAfter().front()); } /// Generates a single if-statement within a while-loop. static scf::IfOp genIf(CodegenEnv &env, OpBuilder &builder, unsigned idx, BitVector &conditions) { Location loc = env.op().getLoc(); SmallVector types; Value cond; for (unsigned b = 0, be = conditions.size(); b < be; b++) { if (!conditions[b]) continue; unsigned tensor = env.merger().tensor(b); assert(idx == env.merger().index(b)); Value clause; if (isCompressedDLT(env.dlt(b)) || isSingletonDLT(env.dlt(b))) { auto dim = *env.merger().getDimNum(tensor, idx); Value op1 = env.emitter().getCoord()[tensor][dim]; Value op2 = env.getLoopIdxValue(idx); clause = builder.create(loc, arith::CmpIPredicate::eq, op1, op2); } else { assert(isDenseDLT(env.merger().getDimLevelType(b)) || isUndefDLT(env.merger().getDimLevelType(b))); clause = constantI1(builder, loc, true); } cond = cond ? builder.create(loc, cond, clause) : clause; } if (env.isReduc()) types.push_back(env.getReduc().getType()); if (env.isExpand()) types.push_back(builder.getIndexType()); if (env.getInsertionChain()) types.push_back(env.getInsertionChain().getType()); scf::IfOp ifOp = builder.create(loc, types, cond, /*else=*/true); builder.setInsertionPointToStart(&ifOp.getThenRegion().front()); return ifOp; } /// Generates end of true branch of if-statement within a while-loop. static void endIf(CodegenEnv &env, OpBuilder &builder, scf::IfOp ifOp, Operation *loop, Value redInput, Value cntInput, Value insInput) { SmallVector operands; if (env.isReduc()) { operands.push_back(env.getReduc()); env.updateReduc(redInput); } if (env.isExpand()) { operands.push_back(env.getExpandCount()); env.updateExpandCount(cntInput); } if (env.getInsertionChain()) { operands.push_back(env.getInsertionChain()); env.updateInsertionChain(insInput); } if (!operands.empty()) builder.create(env.op().getLoc(), operands); builder.setInsertionPointToStart(&ifOp.getElseRegion().front()); } //===----------------------------------------------------------------------===// // Sparse compiler synthesis methods (loop sequence). //===----------------------------------------------------------------------===// /// Starts a loop sequence at given level. Returns true if /// the universal loop index must be maintained at this level. static bool startLoopSeq(CodegenEnv &env, OpBuilder &builder, unsigned exp, unsigned at, unsigned idx, unsigned ldx, unsigned lts) { assert(!env.getLoopIdxValue(idx)); // Emit invariants at this loop sequence level. genInvariants(env, builder, exp, ldx, /*atStart=*/true); // Emit access pattern expansion for sparse tensor output. genExpand(env, builder, at, /*atStart=*/true); // Emit further intitialization at this loop sequence level. unsigned l0 = env.set(lts)[0]; bool needsUniv = false; SmallVector tids; SmallVector dims; env.merger().foreachTidDimPairInBits( env.lat(l0).bits, [&](unsigned b, unsigned tid, Optional dim, DimLevelType dlt) { assert(env.merger().index(b) == idx); if (isDenseDLT(dlt) || isUndefDLT(dlt)) { needsUniv = true; } else { // sparse/singleton dim levels. tids.push_back(tid); dims.push_back(*dim); } }); env.emitter().enterNewLoopSeq(builder, env.op().getLoc(), tids, dims); // Maintain the universal index only if it is actually // consumed by a subsequent lattice point. if (needsUniv) { unsigned lsize = env.set(lts).size(); for (unsigned i = 1; i < lsize; i++) { unsigned li = env.set(lts)[i]; if (!env.merger().hasAnySparse(env.lat(li).simple)) return true; } } return false; } static void genConstantDenseAddressFromLevel(CodegenEnv &env, OpBuilder &builder, unsigned tid, unsigned lvl) { // TODO: Handle affine expression on output tensor. linalg::GenericOp op = env.op(); assert(tid < op.getNumDpsInputs()); OpOperand *input = op.getDpsInputOperands()[tid]; ArrayRef affines = op.getMatchingIndexingMap(input).getResults(); auto enc = getSparseTensorEncoding(input->get().getType()); if (enc) { for (unsigned i = lvl, e = affines.size(); i < e; i++) { AffineExpr affine = affines[toOrigDim(enc, i)]; if (isDenseDLT(getDimLevelType(enc, i)) && affine.isa()) env.emitter().genDenseAffineAddressAtCurLevel( builder, op.getLoc(), input->getOperandNumber(), i, affine); else return; // break on first non-dense non-constant level } } } static void genInitConstantDenseAddress(CodegenEnv &env, RewriterBase &rewriter) { // We can generate address for constant affine expression before any loops // starting from the first level as they do not depend on any thing. // E.g., [Dense, Dense, Sparse] -> (1, 2, d0), the addresses for the first two // levels can be determined before loops. for (unsigned tid = 0, e = env.op().getNumDpsInputs(); tid < e; tid++) genConstantDenseAddressFromLevel(env, rewriter, tid, 0); } /// Return true if the lattices bit can be iterated by a for loop. static bool translateBitsToTidDimPairs( CodegenEnv &env, unsigned li, unsigned idx, SmallVectorImpl &tids, SmallVectorImpl &dims, SmallVectorImpl &affineTids, SmallVectorImpl &affineDims, SmallVectorImpl &exps) { const BitVector &all = env.lat(li).bits; const BitVector &simple = env.lat(li).simple; unsigned numloopCond = 0; // Converts bits to array + dim pair env.merger().foreachTidDimPairInBits(all, [&, idx](unsigned b, unsigned tid, Optional dim, DimLevelType dlt) { if (simple.test(b)) { if (isUndefDLT(dlt)) { // An undefined dlt in the lattices, we probably mean to iterate based // on the dim of output tensor. // E.g., this could be a synthetic tensor (for invariants and sparse // output tensor). // out[i][j] = invariant; or a broadcast // out[i][j] = in[i] (j is undef for input) tid = env.merger().getOutTensorID(); dim = env.merger().getDimNum(tid, idx); // Skips invalid dim (e.g., when this is a zero ranked tensor). if (!dim) return; } tids.push_back(tid); dims.push_back(*dim); numloopCond++; } else if (isDenseDLT(dlt)) { tids.push_back(tid); dims.push_back(*dim); } else { assert(isUndefDLT(dlt)); linalg::GenericOp op = env.op(); if (tid >= op.getNumDpsInputs()) // We only handle affine expression on input tensors (for now). return; OpOperand *operand = &op->getOpOperand(tid); auto enc = getSparseTensorEncoding(operand->get().getType()); // Non-annotated dense tensors requires no special handling. if (!enc) return; ArrayRef affines = op.getMatchingIndexingMap(operand).getResults(); assert(affines.size() == enc.getDimLevelType().size()); for (unsigned i = 0, e = affines.size(); i < e; i++) { AffineExpr exp = affines[toOrigDim(enc, i)]; // Skip simple affine expression and non dense dimensions (which has // it own filter loop). if (exp.isa() || !isDenseDLT(getDimLevelType(enc, i))) continue; // Constant affine expression are handled in genLoop if (!exp.isa()) { bool atLevel = false; if (isInvariantAffine(env, exp, idx, atLevel) && atLevel) { // If the compound affine is invariant and we are right at the // level. We need to generate the address according to the affine // expression. This is also the best place we can do it to avoid // putting it inside inner loops. // NOTE: It assumes that the levels of the input tensor are // initialized in order (and it is also currently guaranteed by // computeIterationGraph), another more admissible approach might be // accepting out-of-order access between consecutive dense levels. affineTids.push_back(tid); affineDims.push_back(i); exps.push_back(exp); } } } } }); if (isDenseDLT(env.dlt(env.merger().getOutTensorID(), idx))) { // Note that we generate dense indices of the output tensor // unconditionally, since they may not appear in the lattice, but may be // needed for linearized env. auto dim = *env.merger().getDimNum(env.merger().getOutTensorID(), idx); tids.push_back(env.merger().getOutTensorID()); dims.push_back(dim); } assert(numloopCond > 0); // If we just need to one loop conditions, the loop can be generated by a for // loop. return numloopCond == 1; } /// Starts a single loop in current sequence. static Operation *startLoop(CodegenEnv &env, OpBuilder &builder, unsigned at, unsigned li, bool needsUniv) { // The set of tensors + dims to generate loops on SmallVector tids, dims; // The set of dense tensors with non-trivial affine expression that just // becomes invariant and the address shall now be generated at the current // level. SmallVector affineTids, affineDims; SmallVector affines; bool isFor = translateBitsToTidDimPairs( env, li, env.topSortAt(at), tids, dims, affineTids, affineDims, affines); // Emit the for/while-loop control. Operation *loop = genLoop(env, builder, at, needsUniv, tids, dims, isFor); for (auto [tid, dim, exp] : llvm::zip(affineTids, affineDims, affines)) { env.emitter().genDenseAffineAddressAtCurLevel(builder, env.op().getLoc(), tid, dim, exp); } // Until now, we have entered every pair in {cond, extra, // affine}Tids/Dims. The addresses of the upcoming levels which are dependent // on constant affines expression may now be determined. auto allTids = llvm::concat(tids, affineTids); auto allDims = llvm::concat(dims, affineDims); for (auto [tid, dim] : llvm::zip(allTids, allDims)) { if (tid != env.merger().getOutTensorID()) genConstantDenseAddressFromLevel(env, builder, tid, dim + 1); } return loop; } /// Ends a single loop in current sequence. Returns new values for needsUniv. static bool endLoop(CodegenEnv &env, RewriterBase &rewriter, Operation *loop, unsigned idx, unsigned li, bool needsUniv) { // End a while-loop. if (auto whileOp = dyn_cast(loop)) { finalizeWhileOp(env, rewriter, idx, needsUniv, env.lat(li).bits, whileOp); } else { needsUniv = false; } env.genLoopBoundary([&](MutableArrayRef reduc) { env.emitter().exitCurrentLoop(rewriter, env.op().getLoc(), reduc); return std::nullopt; }); return needsUniv; } /// Ends a loop sequence at given level. static void endLoopSeq(CodegenEnv &env, OpBuilder &builder, unsigned exp, unsigned at, unsigned idx, unsigned ldx) { assert(env.getLoopIdxValue(idx) == nullptr); env.emitter().exitCurrentLoopSeq(); // Unmark bookkeeping of invariants and loop index. genInvariants(env, builder, exp, ldx, /*atStart=*/false); // Finalize access pattern expansion for sparse tensor output. genExpand(env, builder, at, /*atStart=*/false); } /// Recursively generates code while computing iteration lattices in order /// to manage the complexity of implementing co-iteration over unions /// and intersections of sparse iterations spaces. static void genStmt(CodegenEnv &env, RewriterBase &rewriter, unsigned exp, unsigned at) { // At each leaf, assign remaining tensor (sub)expression to output tensor. if (at == env.topSortSize()) { unsigned ldx = env.topSortAt(at - 1); Value rhs = genExp(env, rewriter, exp, ldx); genTensorStore(env, rewriter, exp, rhs); return; } // Construct iteration lattices for current loop index, with L0 at top. unsigned idx = env.topSortAt(at); unsigned ldx = at == 0 ? -1u : env.topSortAt(at - 1); unsigned lts = env.merger().optimizeSet(env.merger().buildLattices(exp, idx)); // TODO: sort // TODO: dedup // Start a loop sequence. bool needsUniv = startLoopSeq(env, rewriter, exp, at, idx, ldx, lts); // Emit a loop for every lattice point L0 >= Li in this loop sequence. unsigned lsize = env.set(lts).size(); for (unsigned i = 0; i < lsize; i++) { // Start a loop. unsigned li = env.set(lts)[i]; Operation *loop = startLoop(env, rewriter, at, li, needsUniv); // Visit all lattices points with Li >= Lj to generate the // loop-body, possibly with if statements for coiteration. Value redInput = env.getReduc(); Value cntInput = env.getExpandCount(); Value insInput = env.getInsertionChain(); bool isWhile = dyn_cast(loop) != nullptr; for (unsigned j = 0; j < lsize; j++) { unsigned lj = env.set(lts)[j]; unsigned ej = env.lat(lj).exp; if (li == lj || env.merger().latGT(li, lj)) { // Recurse into body of each branch. if (isWhile) { scf::IfOp ifOp = genIf(env, rewriter, idx, env.lat(lj).simple); genStmt(env, rewriter, ej, at + 1); endIf(env, rewriter, ifOp, loop, redInput, cntInput, insInput); } else { genStmt(env, rewriter, ej, at + 1); } } } // End a loop. needsUniv = endLoop(env, rewriter, loop, idx, li, needsUniv); } // End a loop sequence. endLoopSeq(env, rewriter, exp, at, idx, ldx); } /// Converts the result computed by the sparse kernel into the required form. static void genResult(CodegenEnv &env, RewriterBase &rewriter) { linalg::GenericOp op = env.op(); OpOperand *lhs = op.getDpsInitOperand(0); Value tensor = lhs->get(); Type resType = tensor.getType(); if (getSparseTensorEncoding(resType)) { // The sparse tensor rematerializes from the original sparse tensor's // underlying sparse storage format. For an insertion chain, the // tensor materializes from the chain with 'hasInserts' enabled. bool hasInserts = false; if (Value chain = env.getInsertionChain()) { hasInserts = true; tensor = chain; } rewriter.replaceOpWithNewOp(op, resType, tensor, hasInserts); } else { // To rematerialize an non-annotated tensor, simply load it // from the bufferized value. Value val = env.emitter().getValBuffer().back(); // value array rewriter.replaceOpWithNewOp(op, resType, val); } } //===----------------------------------------------------------------------===// // Sparse compiler rewriting methods. //===----------------------------------------------------------------------===// namespace { /// Sparse rewriting rule for generic Lingalg operation. struct GenericOpSparsifier : public OpRewritePattern { public: GenericOpSparsifier(MLIRContext *context, SparsificationOptions o) : OpRewritePattern(context), options(o) {} LogicalResult matchAndRewrite(linalg::GenericOp op, PatternRewriter &rewriter) const override { // Only accept single output operations. if (op.getNumDpsInits() != 1) return failure(); // Sets up a code generation environment. unsigned numTensors = op->getNumOperands(); unsigned numLoops = op.getNumLoops(); unsigned numFilterLoops = getNumCompoundAffineOnSparseDims(op); CodegenEnv env(op, options, numTensors, numLoops, numFilterLoops); // Detects sparse annotations and translates the per-dimension sparsity // information for all tensors to loop indices in the kernel. if (!findSparseAnnotations(env)) return failure(); // Builds the tensor expression for the Linalg operation in SSA form. Optional optExp = env.merger().buildTensorExpFromLinalg(op); if (!optExp) return failure(); unsigned exp = *optExp; // Computes a topologically sorted iteration graph to ensure tensors // are visited in natural index order. Gradually relaxes the considered // constraints until an acyclic iteration graph results, such that sparse // code generation can proceed. As a last resort, an attempt is made // to resolve cycles by inserting a conversion. bool isAdmissible = false; bool hasCycle = true; OpOperand *sparseOut = nullptr; unsigned outerParNest = -1u; // An const list of all masks that we used for interation graph // computation. Must be ordered from more strict to less strict. const auto allMask = {SortMask::kIncludeAll, SortMask::kIncludeUndef, SortMask::kIncludeDense, SortMask::kSparseOnly}; for (auto mask : allMask) if (computeIterationGraph(env, mask)) { hasCycle = false; if (isAdmissibleTensorExp(env, exp, &sparseOut, &outerParNest)) { isAdmissible = true; break; } // else try a set of less strict constraints. } if (hasCycle) return resolveCycle(env, rewriter); // one last shot if (!isAdmissible) return failure(); // inadmissible expression, reject // Recursively generates code if admissible. env.startEmit(sparseOut, outerParNest); genBuffers(env, rewriter); genInitConstantDenseAddress(env, rewriter); genStmt(env, rewriter, exp, 0); genResult(env, rewriter); return success(); } private: // Last resort cycle resolution. LogicalResult resolveCycle(CodegenEnv &env, PatternRewriter &rewriter) const { // Compute topological sort while leaving out every // sparse input tensor in succession until an acylic // iteration graph results. for (OpOperand *t : env.op().getDpsInputOperands()) { unsigned tensor = t->getOperandNumber(); Value tval = t->get(); auto srcEnc = getSparseTensorEncoding(tval.getType()); if (!srcEnc || !computeIterationGraph(env, SortMask::kSparseOnly, t)) continue; // Found an input tensor that resolves the cycle by inserting a // conversion into a sparse tensor that adheres to the iteration // graph order. Also releases the temporary sparse tensor. // // TODO: investigate fusing the conversion with computation, // especially if it is a direct yield! // auto srcTp = tval.getType().cast(); auto dstEnc = SparseTensorEncodingAttr::get( getContext(), srcEnc.getDimLevelType(), permute(env, env.op().getMatchingIndexingMap(t)), // new order srcEnc.getHigherOrdering(), srcEnc.getPointerBitWidth(), srcEnc.getIndexBitWidth()); auto dstTp = RankedTensorType::get(srcTp.getShape(), srcTp.getElementType(), dstEnc); auto convert = rewriter.create(tval.getLoc(), dstTp, tval); env.op()->setOperand(tensor, convert); rewriter.setInsertionPointAfter(env.op()); rewriter.create(tval.getLoc(), convert); return success(); } // Cannot be resolved with a single conversion. // TODO: convert more than one? return failure(); } /// Options to control sparse code generation. SparsificationOptions options; }; } // namespace /// Populates the given patterns list with rewriting rules required for /// the sparsification of linear algebra operations. void mlir::populateSparsificationPatterns( RewritePatternSet &patterns, const SparsificationOptions &options) { patterns.add(patterns.getContext(), options); }