// RUN: mlir-opt %s -allow-unregistered-dialect -one-shot-bufferize="bufferize-function-boundaries=1" -split-input-file -verify-diagnostics func.func private @foo() -> tensor func.func @bar() -> tensor { %foo = constant @foo : () -> (tensor) // expected-error @+1 {{expected a CallOp}} %res = call_indirect %foo() : () -> (tensor) return %res : tensor } // ----- // expected-error @+2 {{cannot bufferize bodiless function that returns a tensor}} // expected-error @+1 {{failed to bufferize op}} func.func private @foo() -> tensor // ----- // expected-error @+1 {{cannot bufferize a FuncOp with tensors and without a unique ReturnOp}} func.func @swappy(%cond1 : i1, %cond2 : i1, %t1 : tensor, %t2 : tensor) -> (tensor, tensor) { cf.cond_br %cond1, ^bb1, ^bb2 ^bb1: %T:2 = scf.if %cond2 -> (tensor, tensor) { scf.yield %t1, %t2 : tensor, tensor } else { scf.yield %t2, %t1 : tensor, tensor } return %T#0, %T#1 : tensor, tensor ^bb2: return %t2, %t1 : tensor, tensor } // ----- func.func @scf_if_not_equivalent( %cond: i1, %t1: tensor {bufferization.writable = true}, %idx: index) -> tensor { %r = scf.if %cond -> (tensor) { scf.yield %t1 : tensor } else { // This buffer aliases, but it is not equivalent. %t2 = tensor.extract_slice %t1 [%idx] [%idx] [1] : tensor to tensor // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} scf.yield %t2 : tensor } // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} return %r : tensor } // ----- func.func @scf_if_not_aliasing( %cond: i1, %t1: tensor {bufferization.writable = true}, %idx: index) -> f32 { %r = scf.if %cond -> (tensor) { scf.yield %t1 : tensor } else { // This buffer aliases. %t2 = bufferization.alloc_tensor(%idx) : tensor // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} scf.yield %t2 : tensor } %f = tensor.extract %r[%idx] : tensor return %f : f32 } // ----- // expected-error @-3 {{expected callgraph to be free of circular dependencies}} func.func @foo() { call @bar() : () -> () return } func.func @bar() { call @foo() : () -> () return } // ----- func.func @scf_for(%A : tensor, %B : tensor {bufferization.writable = true}, %C : tensor<4xf32>, %lb : index, %ub : index, %step : index) -> (f32, f32) { %r0:2 = scf.for %i = %lb to %ub step %step iter_args(%tA = %A, %tB = %B) -> (tensor, tensor) { %ttA = tensor.insert_slice %C into %tA[0][4][1] : tensor<4xf32> into tensor %ttB = tensor.insert_slice %C into %tB[0][4][1] : tensor<4xf32> into tensor // Throw a wrench in the system by swapping yielded values: this result in a // ping-pong of values at each iteration on which we currently want to fail. // expected-error @+1 {{Yield operand #0 is not equivalent to the corresponding iter bbArg}} scf.yield %ttB, %ttA : tensor, tensor } %f0 = tensor.extract %r0#0[%step] : tensor %f1 = tensor.extract %r0#1[%step] : tensor return %f0, %f1: f32, f32 } // ----- func.func @scf_while_non_equiv_condition(%arg0: tensor<5xi1>, %arg1: tensor<5xi1>, %idx: index) -> (i1, i1) { %r0, %r1 = scf.while (%w0 = %arg0, %w1 = %arg1) : (tensor<5xi1>, tensor<5xi1>) -> (tensor<5xi1>, tensor<5xi1>) { %condition = tensor.extract %w0[%idx] : tensor<5xi1> // expected-error @+1 {{Condition arg #0 is not equivalent to the corresponding iter bbArg}} scf.condition(%condition) %w1, %w0 : tensor<5xi1>, tensor<5xi1> } do { ^bb0(%b0: tensor<5xi1>, %b1: tensor<5xi1>): %pos = "dummy.some_op"() : () -> (index) %val = "dummy.another_op"() : () -> (i1) %1 = tensor.insert %val into %b0[%pos] : tensor<5xi1> scf.yield %1, %b1 : tensor<5xi1>, tensor<5xi1> } %v0 = tensor.extract %r0[%idx] : tensor<5xi1> %v1 = tensor.extract %r1[%idx] : tensor<5xi1> return %v0, %v1 : i1, i1 } // ----- func.func @scf_while_non_equiv_yield(%arg0: tensor<5xi1>, %arg1: tensor<5xi1>, %idx: index) -> (i1, i1) { %r0, %r1 = scf.while (%w0 = %arg0, %w1 = %arg1) : (tensor<5xi1>, tensor<5xi1>) -> (tensor<5xi1>, tensor<5xi1>) { %condition = tensor.extract %w0[%idx] : tensor<5xi1> scf.condition(%condition) %w0, %w1 : tensor<5xi1>, tensor<5xi1> } do { ^bb0(%b0: tensor<5xi1>, %b1: tensor<5xi1>): %pos = "dummy.some_op"() : () -> (index) %val = "dummy.another_op"() : () -> (i1) %1 = tensor.insert %val into %b0[%pos] : tensor<5xi1> // expected-error @+1 {{Yield operand #0 is not equivalent to the corresponding iter bbArg}} scf.yield %b1, %1 : tensor<5xi1>, tensor<5xi1> } %v0 = tensor.extract %r0[%idx] : tensor<5xi1> %v1 = tensor.extract %r1[%idx] : tensor<5xi1> return %v0, %v1 : i1, i1 } // ----- func.func private @fun_with_side_effects(%A: tensor) func.func @foo(%A: tensor {bufferization.writable = true}) -> (tensor) { call @fun_with_side_effects(%A) : (tensor) -> () return %A: tensor } func.func @scf_yield_needs_copy(%A : tensor {bufferization.writable = true}, %iters : index) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %res = scf.for %arg0 = %c0 to %iters step %c1 iter_args(%bbarg = %A) -> (tensor) { %r = func.call @foo(%A) : (tensor) -> (tensor) // expected-error @+1 {{Yield operand #0 is not equivalent to the corresponding iter bbArg}} scf.yield %r : tensor } call @fun_with_side_effects(%res) : (tensor) -> () return } // ----- func.func @extract_slice_fun(%A : tensor {bufferization.writable = true}) -> tensor<4xf32> { // This bufferizes to a pattern that the cross-function boundary pass needs to // convert into a new memref argument at all call site; this may be either: // - an externally created aliasing subview (if we want to allow aliasing // function arguments). // - a new alloc + copy (more expensive but does not create new function // argument aliasing). %r0 = tensor.extract_slice %A[0][4][1] : tensor to tensor<4xf32> // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} return %r0: tensor<4xf32> } // ----- func.func @scf_yield(%b : i1, %A : tensor<4xf32>, %B : tensor<4xf32>) -> tensor<4xf32> { %r = scf.if %b -> (tensor<4xf32>) { scf.yield %A : tensor<4xf32> } else { scf.yield %B : tensor<4xf32> } // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} return %r: tensor<4xf32> } // ----- func.func @unknown_op(%A : tensor<4xf32>) -> tensor<4xf32> { // expected-error: @+1 {{op was not bufferized}} %r = "marklar"(%A) : (tensor<4xf32>) -> (tensor<4xf32>) // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} return %r: tensor<4xf32> } // ----- func.func @mini_test_case1() -> tensor<10x20xf32> { %f0 = arith.constant 0.0 : f32 %t = bufferization.alloc_tensor() : tensor<10x20xf32> %r = linalg.fill ins(%f0 : f32) outs(%t : tensor<10x20xf32>) -> tensor<10x20xf32> // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} return %r : tensor<10x20xf32> } // ----- func.func @main() -> tensor<4xi32> { %r = scf.execute_region -> tensor<4xi32> { %A = arith.constant dense<[1, 2, 3, 4]> : tensor<4xi32> // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} scf.yield %A: tensor<4xi32> } // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} return %r: tensor<4xi32> } // ----- func.func @to_memref_op_is_writing( %t1: tensor {bufferization.writable = true}, %idx1: index, %idx2: index, %idx3: index, %v1: vector<5xf32>) -> (vector<5xf32>, vector<5xf32>) { // This is a RaW conflict because to_memref is an inplace write and %t1 is // read further down. This will likely have to change with partial // bufferization. // expected-error @+1 {{to_memref ops not supported during One-Shot Analysis}} %0 = bufferization.to_memref %t1 : memref // Read from both. %cst = arith.constant 0.0 : f32 %r1 = vector.transfer_read %t1[%idx3], %cst : tensor, vector<5xf32> %r2 = vector.transfer_read %0[%idx3], %cst : memref, vector<5xf32> return %r1, %r2 : vector<5xf32>, vector<5xf32> } // ----- // expected-error @+2 {{failed to bufferize op}} // expected-error @+1 {{cannot bufferize bodiless function that returns a tensor}} func.func private @foo(%t : tensor) -> (f32, tensor, f32) func.func @call_to_unknown_tensor_returning_func(%t : tensor) { call @foo(%t) : (tensor) -> (f32, tensor, f32) return } // ----- func.func @foo(%t : tensor<5xf32>) -> (tensor<5xf32>) { %0 = bufferization.alloc_tensor() : tensor<5xf32> // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} return %0 : tensor<5xf32> } // Note: This function is not analyzed because there was an error in the // previous one. func.func @call_to_func_returning_non_equiv_tensor(%t : tensor<5xf32>) { call @foo(%t) : (tensor<5xf32>) -> (tensor<5xf32>) return } // ----- func.func @yield_alloc_dominance_test_1(%cst : f32, %idx : index, %idx2 : index) -> f32 { %0 = scf.execute_region -> tensor { %1 = bufferization.alloc_tensor(%idx) : tensor // expected-error @+1 {{operand #0 may return/yield a new buffer allocation}} scf.yield %1 : tensor } %2 = tensor.insert %cst into %0[%idx] : tensor %r = tensor.extract %2[%idx2] : tensor return %r : f32 } // ----- func.func @yield_alloc_dominance_test_2(%cst : f32, %idx : index, %idx2 : index) -> f32 { %1 = bufferization.alloc_tensor(%idx) : tensor %0 = scf.execute_region -> tensor { // This YieldOp returns a value that is defined in a parent block, thus // no error. scf.yield %1 : tensor } %2 = tensor.insert %cst into %0[%idx] : tensor %r = tensor.extract %2[%idx2] : tensor return %r : f32 }