// RUN: mlir-opt %s -split-input-file | mlir-opt | FileCheck %s // CHECK-LABEL: func private @sparse_1d_tensor( // CHECK-SAME: tensor<32xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>>) func.func private @sparse_1d_tensor(tensor<32xf64, #sparse_tensor.encoding<{ dimLevelType = ["compressed"] }>>) // ----- #CSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(i,j) -> (i,j)>, pointerBitWidth = 64, indexBitWidth = 64 }> // CHECK-LABEL: func private @sparse_csr( // CHECK-SAME: tensor>) func.func private @sparse_csr(tensor) // ----- #CSC = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(i,j) -> (j,i)>, pointerBitWidth = 0, indexBitWidth = 0 }> // CHECK-LABEL: func private @sparse_csc( // CHECK-SAME: tensor (d1, d0)> }>>) func.func private @sparse_csc(tensor) // ----- #DCSC = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(i,j) -> (j,i)>, pointerBitWidth = 0, indexBitWidth = 64 }> // CHECK-LABEL: func private @sparse_dcsc( // CHECK-SAME: tensor (d1, d0)>, indexBitWidth = 64 }>>) func.func private @sparse_dcsc(tensor) // ----- #COO = #sparse_tensor.encoding<{ dimLevelType = [ "compressed-nu-no", "singleton-no" ] }> // CHECK-LABEL: func private @sparse_coo( // CHECK-SAME: tensor>) func.func private @sparse_coo(tensor) // ----- #SortedCOO = #sparse_tensor.encoding<{ dimLevelType = [ "compressed-nu", "singleton" ] }> // CHECK-LABEL: func private @sparse_sorted_coo( // CHECK-SAME: tensor<10x10xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed-nu", "singleton" ] }>>) func.func private @sparse_sorted_coo(tensor<10x10xf64, #SortedCOO>) // ----- #BCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense", "dense" ], dimOrdering = affine_map<(ii, jj, i, j) -> (ii, jj, i, j)>, higherOrdering = affine_map<(i, j) -> (i floordiv 2, j floordiv 3, i mod 2, j mod 3)> }> // CHECK-LABEL: func private @sparse_bcsr( // CHECK-SAME: tensor<10x60xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense", "dense" ], higherOrdering = affine_map<(d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod 3)> }>> func.func private @sparse_bcsr(tensor<10x60xf64, #BCSR>) // ----- #ELL = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ], dimOrdering = affine_map<(ii, i, j) -> (ii, i, j)>, higherOrdering = affine_map<(i,j)[c] -> (c*4*i, i, j)> }> // CHECK-LABEL: func private @sparse_ell( // CHECK-SAME: tensor (d0 * (s0 * 4), d0, d1)> }>> func.func private @sparse_ell(tensor)