// DEFINE: %{option} = enable-runtime-library=true // DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ // DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} // // Do the same run, but now with direct IR generation. // REDEFINE: %{option} = enable-runtime-library=false // RUN: %{command} // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true" // RUN: %{command} #SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }> #trait_op = { indexing_maps = [ affine_map<(i) -> (i)>, // a affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "x(i) = OP a(i)" } module { func.func @sparse_absf(%arg0: tensor) -> tensor { %c0 = arith.constant 0 : index %d = tensor.dim %arg0, %c0 : tensor %xin = bufferization.alloc_tensor(%d) : tensor %0 = linalg.generic #trait_op ins(%arg0: tensor) outs(%xin: tensor) { ^bb0(%a: f64, %x: f64) : %result = math.absf %a : f64 linalg.yield %result : f64 } -> tensor return %0 : tensor } func.func @sparse_absi(%arg0: tensor) -> tensor { %c0 = arith.constant 0 : index %d = tensor.dim %arg0, %c0 : tensor %xin = bufferization.alloc_tensor(%d) : tensor %0 = linalg.generic #trait_op ins(%arg0: tensor) outs(%xin: tensor) { ^bb0(%a: i32, %x: i32) : %result = math.absi %a : i32 linalg.yield %result : i32 } -> tensor return %0 : tensor } // Driver method to call and verify sign kernel. func.func @entry() { %c0 = arith.constant 0 : index %df = arith.constant 99.99 : f64 %di = arith.constant 9999 : i32 %pnan = arith.constant 0x7FF0000001000000 : f64 %nnan = arith.constant 0xFFF0000001000000 : f64 %pinf = arith.constant 0x7FF0000000000000 : f64 %ninf = arith.constant 0xFFF0000000000000 : f64 // Setup sparse vectors. %v1 = arith.constant sparse< [ [0], [3], [5], [11], [13], [17], [18], [20], [21], [28], [29], [31] ], [ -1.5, 1.5, -10.2, 11.3, 1.0, -1.0, 0x7FF0000001000000, // +NaN 0xFFF0000001000000, // -NaN 0x7FF0000000000000, // +Inf 0xFFF0000000000000, // -Inf -0.0, // -Zero 0.0 // +Zero ] > : tensor<32xf64> %v2 = arith.constant sparse< [ [0], [3], [5], [11], [13], [17], [18], [21], [31] ], [ -2147483648, -2147483647, -1000, -1, 0, 1, 1000, 2147483646, 2147483647 ] > : tensor<32xi32> %sv1 = sparse_tensor.convert %v1 : tensor<32xf64> to tensor %sv2 = sparse_tensor.convert %v2 : tensor<32xi32> to tensor // Call abs kernels. %0 = call @sparse_absf(%sv1) : (tensor) -> tensor %1 = call @sparse_absi(%sv2) : (tensor) -> tensor // // Verify the results. // // CHECK: 12 // CHECK-NEXT: ( 1.5, 1.5, 10.2, 11.3, 1, 1, nan, nan, inf, inf, 0, 0 ) // CHECK-NEXT: 9 // CHECK-NEXT: ( -2147483648, 2147483647, 1000, 1, 0, 1, 1000, 2147483646, 2147483647 ) // %x = sparse_tensor.values %0 : tensor to memref %y = sparse_tensor.values %1 : tensor to memref %a = vector.transfer_read %x[%c0], %df: memref, vector<12xf64> %b = vector.transfer_read %y[%c0], %di: memref, vector<9xi32> %na = sparse_tensor.number_of_entries %0 : tensor %nb = sparse_tensor.number_of_entries %1 : tensor vector.print %na : index vector.print %a : vector<12xf64> vector.print %nb : index vector.print %b : vector<9xi32> // Release the resources. bufferization.dealloc_tensor %sv1 : tensor bufferization.dealloc_tensor %sv2 : tensor bufferization.dealloc_tensor %0 : tensor bufferization.dealloc_tensor %1 : tensor return } }