// DEFINE: %{option} = enable-runtime-library=true // DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} | \ // DEFINE: TENSOR0="%mlir_src_dir/test/Integration/data/wide.mtx" \ // DEFINE: mlir-cpu-runner \ // DEFINE: -e entry -entry-point-result=void \ // DEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ // DEFINE: FileCheck %s // // RUN: %{command} // // Do the same run, but now with direct IR generation. // REDEFINE: %{option} = enable-runtime-library=false // RUN: %{command} // // Do the same run, but now with parallelization strategy. // REDEFINE: %{option} = "enable-runtime-library=true parallelization-strategy=any-storage-any-loop" // RUN: %{command} // // Do the same run, but now with direct IR generation and parallelization strategy. // REDEFINE: %{option} = "enable-runtime-library=false parallelization-strategy=any-storage-any-loop" // RUN: %{command} // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{option} = "enable-runtime-library=false vl=2 reassociate-fp-reductions=true enable-index-optimizations=true" // RUN: %{command} !Filename = !llvm.ptr #SparseMatrix = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], pointerBitWidth = 8, indexBitWidth = 8 }> #matvec = { indexing_maps = [ affine_map<(i,j) -> (i,j)>, // A affine_map<(i,j) -> (j)>, // b affine_map<(i,j) -> (i)> // x (out) ], iterator_types = ["parallel", "reduction"], doc = "X(i) += A(i,j) * B(j)" } // // Integration test that lowers a kernel annotated as sparse to // actual sparse code, initializes a matching sparse storage scheme // from file, and runs the resulting code with the JIT compiler. // module { // // A kernel that multiplies a sparse matrix A with a dense vector b // into a dense vector x. // func.func @kernel_matvec(%arga: tensor, %argb: tensor, %argx: tensor) -> tensor { %0 = linalg.generic #matvec ins(%arga, %argb: tensor, tensor) outs(%argx: tensor) { ^bb(%a: i32, %b: i32, %x: i32): %0 = arith.muli %a, %b : i32 %1 = arith.addi %x, %0 : i32 linalg.yield %1 : i32 } -> tensor return %0 : tensor } func.func private @getTensorFilename(index) -> (!Filename) // // Main driver that reads matrix from file and calls the sparse kernel. // func.func @entry() { %i0 = arith.constant 0 : i32 %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %c256 = arith.constant 256 : index // Read the sparse matrix from file, construct sparse storage. %fileName = call @getTensorFilename(%c0) : (index) -> (!Filename) %a = sparse_tensor.new %fileName : !Filename to tensor // Initialize dense vectors. %b = tensor.generate %c256 { ^bb0(%i : index): %k = arith.addi %i, %c1 : index %j = arith.index_cast %k : index to i32 tensor.yield %j : i32 } : tensor %x = tensor.generate %c4 { ^bb0(%i : index): tensor.yield %i0 : i32 } : tensor // Call kernel. %0 = call @kernel_matvec(%a, %b, %x) : (tensor, tensor, tensor) -> tensor // Print the result for verification. // // CHECK: ( 889, 1514, -21, -3431 ) // %v = vector.transfer_read %0[%c0], %i0: tensor, vector<4xi32> vector.print %v : vector<4xi32> // Release the resources. bufferization.dealloc_tensor %a : tensor return } }