// DEFINE: %{option} = enable-runtime-library=true // DEFINE: %{command} = mlir-opt %s --sparse-compiler=%{option} // DxEFINE: mlir-cpu-runner \ // DxEFINE: -e entry -entry-point-result=void \ // DxEFINE: -shared-libs=%mlir_lib_dir/libmlir_c_runner_utils%shlibext | \ // DxEFINE: FileCheck %s // // RUN: %{command} // // Do the same run, but now with direct IR generation. // REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true" // RUN: %{command} // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true" // RUN: %{command} #DCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ] }> #DCSC = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(i,j) -> (j,i)> }> #transpose_trait = { indexing_maps = [ affine_map<(i,j) -> (j,i)>, // A affine_map<(i,j) -> (i,j)> // X ], iterator_types = ["parallel", "parallel"], doc = "X(i,j) = A(j,i)" } module { // // Transposing a sparse row-wise matrix into another sparse row-wise // matrix introduces a cycle in the iteration graph. This complication // can be avoided by manually inserting a conversion of the incoming // matrix into a sparse column-wise matrix first. // func.func @sparse_transpose(%arga: tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> { %t = sparse_tensor.convert %arga : tensor<3x4xf64, #DCSR> to tensor<3x4xf64, #DCSC> %i = bufferization.alloc_tensor() : tensor<4x3xf64, #DCSR> %0 = linalg.generic #transpose_trait ins(%t: tensor<3x4xf64, #DCSC>) outs(%i: tensor<4x3xf64, #DCSR>) { ^bb(%a: f64, %x: f64): linalg.yield %a : f64 } -> tensor<4x3xf64, #DCSR> bufferization.dealloc_tensor %t : tensor<3x4xf64, #DCSC> return %0 : tensor<4x3xf64, #DCSR> } // // However, even better, the sparse compiler is able to insert such a // conversion automatically to resolve a cycle in the iteration graph! // func.func @sparse_transpose_auto(%arga: tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> { %i = bufferization.alloc_tensor() : tensor<4x3xf64, #DCSR> %0 = linalg.generic #transpose_trait ins(%arga: tensor<3x4xf64, #DCSR>) outs(%i: tensor<4x3xf64, #DCSR>) { ^bb(%a: f64, %x: f64): linalg.yield %a : f64 } -> tensor<4x3xf64, #DCSR> return %0 : tensor<4x3xf64, #DCSR> } // // Main driver. // func.func @entry() { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %c4 = arith.constant 4 : index %du = arith.constant 0.0 : f64 // Setup input sparse matrix from compressed constant. %d = arith.constant dense <[ [ 1.1, 1.2, 0.0, 1.4 ], [ 0.0, 0.0, 0.0, 0.0 ], [ 3.1, 0.0, 3.3, 3.4 ] ]> : tensor<3x4xf64> %a = sparse_tensor.convert %d : tensor<3x4xf64> to tensor<3x4xf64, #DCSR> // Call the kernels. %0 = call @sparse_transpose(%a) : (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> %1 = call @sparse_transpose_auto(%a) : (tensor<3x4xf64, #DCSR>) -> tensor<4x3xf64, #DCSR> // // Verify result. // // CHECK: ( 1.1, 0, 3.1 ) // CHECK-NEXT: ( 1.2, 0, 0 ) // CHECK-NEXT: ( 0, 0, 3.3 ) // CHECK-NEXT: ( 1.4, 0, 3.4 ) // // CHECK-NEXT: ( 1.1, 0, 3.1 ) // CHECK-NEXT: ( 1.2, 0, 0 ) // CHECK-NEXT: ( 0, 0, 3.3 ) // CHECK-NEXT: ( 1.4, 0, 3.4 ) // %x = sparse_tensor.convert %0 : tensor<4x3xf64, #DCSR> to tensor<4x3xf64> scf.for %i = %c0 to %c4 step %c1 { %v1 = vector.transfer_read %x[%i, %c0], %du: tensor<4x3xf64>, vector<3xf64> vector.print %v1 : vector<3xf64> } %y = sparse_tensor.convert %1 : tensor<4x3xf64, #DCSR> to tensor<4x3xf64> scf.for %i = %c0 to %c4 step %c1 { %v2 = vector.transfer_read %y[%i, %c0], %du: tensor<4x3xf64>, vector<3xf64> vector.print %v2 : vector<3xf64> } // Release resources. bufferization.dealloc_tensor %a : tensor<3x4xf64, #DCSR> bufferization.dealloc_tensor %0 : tensor<4x3xf64, #DCSR> bufferization.dealloc_tensor %1 : tensor<4x3xf64, #DCSR> return } }