//===- TestTilingInterface.cpp - Test tiling using `TilingInterface` -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a pass for testing tiling operations using // `TilingInterface`. // //===----------------------------------------------------------------------===// #include #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Func/IR/FuncOps.h" #include "mlir/Dialect/Linalg/IR/Linalg.h" #include "mlir/Dialect/Linalg/Transforms/TilingInterfaceImpl.h" #include "mlir/Dialect/Linalg/Transforms/Transforms.h" #include "mlir/Dialect/MemRef/IR/MemRef.h" #include "mlir/Dialect/SCF/IR/SCF.h" #include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Tensor/IR/TensorTilingInterfaceImpl.h" #include "mlir/Interfaces/TilingInterface.h" #include "mlir/Pass/Pass.h" #include "mlir/Pass/PassManager.h" #include "mlir/Transforms/GreedyPatternRewriteDriver.h" #include "llvm/ADT/TypeSwitch.h" using namespace mlir; // TODO: this file should disappear and instead tests should make use of the // transform dialect. namespace { /// Marker used as attribute name in generated Linalg rewriting transformations. const StringLiteral kLinalgTransformMarker = "__internal_linalg_transform__"; /// Helper class to control application of linalg transformation patterns. /// Control comes in 2 forms: /// 1. attribute matching and setting behavior using the attribute named /// `kLinalgTransformMarker`. This can be used to build a state machine /// using attributes and incrementally applying patterns to advance states. /// 2. filter function, which is a simple lambda on the Operation* that /// returns a LogicalResult. struct LinalgTransformationFilter { using FilterFunction = std::function; explicit LinalgTransformationFilter( ArrayRef matchDisjunction = {}, Optional replacement = std::nullopt); explicit LinalgTransformationFilter( const FilterFunction &f, ArrayRef matchDisjunction = {}, Optional replacement = std::nullopt); LinalgTransformationFilter(LinalgTransformationFilter &&) = default; LinalgTransformationFilter(const LinalgTransformationFilter &) = default; LogicalResult checkAndNotify(PatternRewriter &rewriter, Operation *op) const; void replaceLinalgTransformationFilter(PatternRewriter &rewriter, Operation *op) const; LinalgTransformationFilter &addFilter(const FilterFunction &f) { if (f) filters.push_back(f); return *this; } template LinalgTransformationFilter &addOpFilter() { return addFilter( [](Operation *op) { return success(isa(op)); }); } LinalgTransformationFilter &addOpNameFilter(StringRef opName) { return addFilter([opName](Operation *op) { return success(op->getName().getStringRef() == opName); }); } LinalgTransformationFilter &setMatchByDefault() { matchByDefault = true; return *this; } private: SmallVector filters; SmallVector matchDisjunction; Optional replacement; /// When set to true, if the attribute is not set, it will be treated as /// a match. Default is false. bool matchByDefault; }; LinalgTransformationFilter::LinalgTransformationFilter( ArrayRef matchDisjunction, Optional replacement) : matchDisjunction(matchDisjunction.begin(), matchDisjunction.end()), replacement(replacement), matchByDefault(false) {} LogicalResult LinalgTransformationFilter::checkAndNotify(PatternRewriter &rewriter, Operation *op) const { if (llvm::any_of(filters, [&](const FilterFunction &f) { return failed(f(op)); })) return failure(); auto attr = op->template getAttrOfType(kLinalgTransformMarker); if (!attr) { // 1. Has no filter case and matchDisjunction is empty. if (matchDisjunction.empty() || matchByDefault) return success(); // 2. Has no filter but was expecting a filter. return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { diag << " does not have any filter from list: "; interleaveComma(matchDisjunction, diag); }); } // 4. Match explicit filter. for (auto filter : matchDisjunction) if (attr.getValue() == filter) return success(); // 5. Fail to match. return rewriter.notifyMatchFailure(op, [&](Diagnostic &diag) { diag << " does not have any filter from list: "; interleaveComma(matchDisjunction, diag); }); } void LinalgTransformationFilter::replaceLinalgTransformationFilter( PatternRewriter &rewriter, Operation *op) const { if (replacement.has_value()) op->setAttr(kLinalgTransformMarker, *replacement); else op->removeAttr(rewriter.getStringAttr(kLinalgTransformMarker)); } /// Pattern for testing `TileUsingSCFForOp` pattern (that tiles operations using /// the `TilingInterface` with `scf.for` ops for iterating over the tiles) while /// using a `filter` to avoid recursive application. struct TestTileUsingSCFForOp : public OpInterfaceRewritePattern { TestTileUsingSCFForOp( MLIRContext *context, scf::SCFTilingOptions options, LinalgTransformationFilter filter = LinalgTransformationFilter(), PatternBenefit benefit = 1) : OpInterfaceRewritePattern(context, benefit), options(std::move(options)), filter(std::move(filter)) {} /// Construct a generic pattern applied to `opName`. TestTileUsingSCFForOp( StringRef opName, MLIRContext *context, scf::SCFTilingOptions options, LinalgTransformationFilter filter = LinalgTransformationFilter(), PatternBenefit benefit = 1) : OpInterfaceRewritePattern(context, benefit), options(std::move(options)), filter(std::move(filter)) {} LogicalResult matchAndRewrite(TilingInterface op, PatternRewriter &rewriter) const override { if (failed(filter.checkAndNotify(rewriter, op))) return failure(); FailureOr tilingResult = scf::tileUsingSCFForOp(rewriter, op, options); if (failed(tilingResult)) return rewriter.notifyMatchFailure(op, "failed to tile operation"); if (op->getNumResults()) { rewriter.replaceOp(op, tilingResult->replacements); } else { rewriter.eraseOp(op); } for (auto *tiledOp : tilingResult->tiledOps) filter.replaceLinalgTransformationFilter(rewriter, tiledOp); return success(); } private: scf::SCFTilingOptions options; LinalgTransformationFilter filter; }; /// Pattern for testing `TileConsumerAndFuseProducersUsingSCFForOp` pattern /// (that tiles and fuses operations using the `TilingInterface` with `scf.for` /// ops for iterating over the tiles) while using a `filter` to avoid recursive /// application. struct TestTileConsumerAndFuseProducersGreedilyUsingSCFForOp : public OpInterfaceRewritePattern { TestTileConsumerAndFuseProducersGreedilyUsingSCFForOp( MLIRContext *context, scf::SCFTileAndFuseOptions options, LinalgTransformationFilter filter = LinalgTransformationFilter(), PatternBenefit benefit = 1) : OpInterfaceRewritePattern(context, benefit), options(std::move(options)), filter(std::move(filter)) {} /// Construct a generic pattern applied to `opName`. TestTileConsumerAndFuseProducersGreedilyUsingSCFForOp( StringRef opName, MLIRContext *context, scf::SCFTileAndFuseOptions options, LinalgTransformationFilter filter = LinalgTransformationFilter(), PatternBenefit benefit = 1) : OpInterfaceRewritePattern(context, benefit), options(std::move(options)), filter(std::move(filter)) {} LogicalResult matchAndRewrite(TilingInterface op, PatternRewriter &rewriter) const override { if (failed(filter.checkAndNotify(rewriter, op))) return failure(); FailureOr tileAndFuseResult = scf::tileConsumerAndFuseProducerGreedilyUsingSCFForOp(rewriter, op, options); if (failed(tileAndFuseResult)) { return failure(); } // Replace the tiled op with replacements. SmallVector replacements(op->getNumResults()); for (const auto &result : llvm::enumerate(op->getResults())) { replacements[result.index()] = tileAndFuseResult->replacements.lookup(result.value()); } rewriter.replaceOp(op, replacements); filter.replaceLinalgTransformationFilter( rewriter, tileAndFuseResult->tiledAndFusedOps.front()); return success(); } private: scf::SCFTileAndFuseOptions options; LinalgTransformationFilter filter; }; /// Pattern to lower operations that implement the `TilingInterface` to /// loops/scalar IR using `scf.for`. struct LowerToLoopsUsingSCFForOp : public OpInterfaceRewritePattern { using OpInterfaceRewritePattern::OpInterfaceRewritePattern; /// `matchAndRewrite` implementation that returns the significant transformed /// pieces of IR. LogicalResult matchAndRewrite(TilingInterface op, PatternRewriter &rewriter) const override { FailureOr> loops = scf::lowerToLoopsUsingSCFForOp(rewriter, op); if (failed(loops)) return rewriter.notifyMatchFailure(op, "failed to lower to loops"); rewriter.eraseOp(op); return loops; } }; /// Test pass for testing the use of `TilingInterface`. struct TestTilingInterfacePass : public PassWrapper> { MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestTilingInterfacePass) TestTilingInterfacePass() = default; TestTilingInterfacePass(const TestTilingInterfacePass &pass) : PassWrapper(pass) {} void getDependentDialects(DialectRegistry ®istry) const override { registry.insert(); linalg::registerTilingInterfaceExternalModels(registry); tensor::registerTilingInterfaceExternalModels(registry); } StringRef getArgument() const final { return "test-tiling-interface"; } StringRef getDescription() const final { return "Test tiling using TilingInterface"; } Option testTiling{ *this, "tile-using-scf-for", llvm::cl::desc( "Test tiling using TilingInterface with scf.for operations"), llvm::cl::init(false)}; Option testTileConsumerAndFuseProducer{ *this, "tile-consumer-and-fuse-producer-using-scf-for", llvm::cl::desc("Test tile and fuse transformation using TilingInterface " "with scf.for operations"), llvm::cl::init(false)}; Option testLoweringToScalar{ *this, "lower-to-scalar-using-scf-for", llvm::cl::desc("Test lowering to scalar implementation using " "TilingInterface with scf.for operations"), llvm::cl::init(false)}; void runOnOperation() override; private: void addTestPatterns(MLIRContext *context, RewritePatternSet &patterns); }; } // namespace static void addPatternForTiling(MLIRContext *context, RewritePatternSet &patterns, StringRef filterName, ArrayRef tileSizes, ArrayRef interchange = {}) { scf::SCFTilingOptions tilingOptions; tilingOptions.setTileSizes(tileSizes).setInterchange(interchange); LinalgTransformationFilter filter(StringAttr::get(context, filterName), StringAttr::get(context, "tiled")); patterns.add(context, tilingOptions, filter); } static void addPatternForTileAndFuse(MLIRContext *context, RewritePatternSet &patterns, StringRef filterName, ArrayRef tileSizes, ArrayRef interchange = {}) { scf::SCFTileAndFuseOptions tileAndFuseOptions; tileAndFuseOptions.tilingOptions.setTileSizes(tileSizes).setInterchange( interchange); LinalgTransformationFilter filter(StringAttr::get(context, filterName), StringAttr::get(context, "tiled")); patterns.add( context, tileAndFuseOptions, filter); } void TestTilingInterfacePass::addTestPatterns(MLIRContext *context, RewritePatternSet &patterns) { if (testTiling) { // 1. Tiling M and N dims of `linalg.matmul` on tensors. addPatternForTiling(context, patterns, "simple_gemm", {10, 20}); // 2. Tiling M, N and K of `linalg.matmul` on buffers. addPatternForTiling(context, patterns, "simple_gemm_memref", {10, 20, 30}); // 3. Tiling 3D parallel generic op which implements a transpose addPatternForTiling(context, patterns, "parallel_generic_transpose", {10, 0, 20}); // 4. Tiling 2D conv op. addPatternForTiling(context, patterns, "simple_conv", {0, 0, 0, 0, 10, 20, 30}); // 5. Tiling a simple op with `linalg.index` inside. addPatternForTiling(context, patterns, "indexed_semantics", {10, 20}); // 6. Tiling + interchange of an operation addPatternForTiling(context, patterns, "gemm_interchange", {10, 20, 30}, {1, 2, 0}); // 7. Tiling for 2D pad tensor operations. addPatternForTiling(context, patterns, "pad_2dtiling", {2, 3}); // 8. Tiling inner dimension of 2d pad tensor operations. addPatternForTiling(context, patterns, "pad_inner_tiling", {0, 3}); // 9. Tiling inner dimension of 2d pad tensor operations. addPatternForTiling(context, patterns, "pad_outer_tiling", {2, 3}); return; } if (testTileConsumerAndFuseProducer) { // 1. Tile and fuse of gemm with fill producer and bias-add consumer. addPatternForTileAndFuse(context, patterns, "fusion", {10, 20}); // 2. Tile and fuse sequence of GEMMs, by fusing only along M. addPatternForTileAndFuse(context, patterns, "gemm_fusion", {10}); // 3. Tile and fuse gemm with consumer + interchange of tiled loops. addPatternForTileAndFuse(context, patterns, "gemm_interchange_fusion", {10, 20}, {1, 0}); // 4. Tile and fuse matmul + transpose(matmul). Will introduce redundant // computations. addPatternForTileAndFuse(context, patterns, "gemm_plus_gemm_fusion", {10, 20}); // 5. Tile and fuse a sequence of GEMMs by tiling and fusing only along M // dimension. addPatternForTileAndFuse(context, patterns, "gemm_sequence_fusion", {10}); // 6. Fusion of back-to-back-reduction ops addPatternForTileAndFuse(context, patterns, "reduction_sequence_fusion", {10}); return; } if (testLoweringToScalar) { patterns.add(context); } } void TestTilingInterfacePass::runOnOperation() { MLIRContext *context = &getContext(); RewritePatternSet tilingPatterns(context); addTestPatterns(context, tilingPatterns); if (failed(applyPatternsAndFoldGreedily(getOperation(), std::move(tilingPatterns)))) return signalPassFailure(); } namespace mlir { namespace test { void registerTestTilingInterface() { PassRegistration(); } } // namespace test } // namespace mlir