# RUN: %PYTHON %s | FileCheck %s from mlir.ir import * from mlir.dialects import sparse_tensor as st def run(f): print("\nTEST:", f.__name__) f() return f # CHECK-LABEL: TEST: testEncodingAttr1D @run def testEncodingAttr1D(): with Context() as ctx: parsed = Attribute.parse('#sparse_tensor.encoding<{' ' dimLevelType = [ "compressed" ],' ' pointerBitWidth = 16,' ' indexBitWidth = 32' '}>') # CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 16, indexBitWidth = 32 }> print(parsed) casted = st.EncodingAttr(parsed) # CHECK: equal: True print(f"equal: {casted == parsed}") # CHECK: dim_level_types: [] print(f"dim_level_types: {casted.dim_level_types}") # CHECK: dim_ordering: None print(f"dim_ordering: {casted.dim_ordering}") # CHECK: pointer_bit_width: 16 print(f"pointer_bit_width: {casted.pointer_bit_width}") # CHECK: index_bit_width: 32 print(f"index_bit_width: {casted.index_bit_width}") created = st.EncodingAttr.get(casted.dim_level_types, None, None, 0, 0) # CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }> print(created) # CHECK: created_equal: False print(f"created_equal: {created == casted}") # Verify that the factory creates an instance of the proper type. # CHECK: is_proper_instance: True print(f"is_proper_instance: {isinstance(created, st.EncodingAttr)}") # CHECK: created_pointer_bit_width: 0 print(f"created_pointer_bit_width: {created.pointer_bit_width}") # CHECK-LABEL: TEST: testEncodingAttr2D @run def testEncodingAttr2D(): with Context() as ctx: parsed = Attribute.parse('#sparse_tensor.encoding<{' ' dimLevelType = [ "dense", "compressed" ],' ' dimOrdering = affine_map<(d0, d1) -> (d1, d0)>,' ' pointerBitWidth = 8,' ' indexBitWidth = 32' '}>') # CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 8, indexBitWidth = 32 }> print(parsed) casted = st.EncodingAttr(parsed) # CHECK: equal: True print(f"equal: {casted == parsed}") # CHECK: dim_level_types: [, ] print(f"dim_level_types: {casted.dim_level_types}") # CHECK: dim_ordering: (d0, d1) -> (d1, d0) print(f"dim_ordering: {casted.dim_ordering}") # CHECK: pointer_bit_width: 8 print(f"pointer_bit_width: {casted.pointer_bit_width}") # CHECK: index_bit_width: 32 print(f"index_bit_width: {casted.index_bit_width}") created = st.EncodingAttr.get(casted.dim_level_types, casted.dim_ordering, casted.higher_ordering, 8, 32) # CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, pointerBitWidth = 8, indexBitWidth = 32 }> print(created) # CHECK: created_equal: True print(f"created_equal: {created == casted}") # CHECK-LABEL: TEST: testEncodingAttrOnTensorType @run def testEncodingAttrOnTensorType(): with Context() as ctx, Location.unknown(): encoding = st.EncodingAttr( Attribute.parse('#sparse_tensor.encoding<{' ' dimLevelType = [ "compressed" ], ' ' pointerBitWidth = 64,' ' indexBitWidth = 32' '}>')) tt = RankedTensorType.get((1024,), F32Type.get(), encoding=encoding) # CHECK: tensor<1024xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 64, indexBitWidth = 32 }>> print(tt) # CHECK: #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], pointerBitWidth = 64, indexBitWidth = 32 }> print(tt.encoding) assert tt.encoding == encoding