//===- Utils.cpp - Utilities to support the Tensor dialect ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements utilities for the Tensor dialect. // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Tensor/Utils/Utils.h" #include "mlir/Dialect/Affine/IR/AffineOps.h" #include "mlir/Dialect/Arith/IR/Arith.h" #include "mlir/Dialect/Arith/Utils/Utils.h" #include "mlir/Dialect/Utils/IndexingUtils.h" using namespace mlir; using namespace mlir::tensor; PadOp mlir::tensor::createPadHighOp(RankedTensorType type, Value source, Value pad, bool nofold, Location loc, OpBuilder &b) { auto zero = b.createOrFold(loc, 0); SmallVector low(type.getRank(), zero); SmallVector high(type.getRank(), zero); for (const auto &en : enumerate(type.getShape())) { // Pad only the static dimensions of the result tensor type. if (ShapedType::isDynamic(en.value())) continue; // Compute the padding width. AffineExpr d0; bindDims(b.getContext(), d0); auto dimOp = b.createOrFold(loc, source, en.index()); high[en.index()] = affine::makeComposedAffineApply(b, loc, en.value() - d0, {dimOp}) .getResult(); } return b.create(loc, type, source, low, high, pad, nofold); } SmallVector mlir::tensor::createDynamicDimValues(OpBuilder &b, Location loc, Value rankedTensor) { auto tensorTy = cast(rankedTensor.getType()); SmallVector dynamicDims; for (const auto &en : llvm::enumerate(tensorTy.getShape())) { if (en.value() == ShapedType::kDynamic) dynamicDims.push_back( b.create(loc, rankedTensor, en.index())); } return dynamicDims; } FailureOr mlir::tensor::createDimValue(OpBuilder &b, Location loc, Value rankedTensor, int64_t dim) { auto tensorTy = dyn_cast(rankedTensor.getType()); if (!tensorTy) return failure(); auto shape = tensorTy.getShape(); if (dim >= static_cast(shape.size())) return failure(); if (ShapedType::isDynamic(shape[dim])) return OpFoldResult(b.createOrFold(loc, rankedTensor, dim)); return OpFoldResult(b.getIndexAttr(shape[dim])); } SmallVector mlir::tensor::createDimValues(OpBuilder &b, Location loc, Value rankedTensor) { auto tensorTy = cast(rankedTensor.getType()); SmallVector dims; for (const auto &en : llvm::enumerate(tensorTy.getShape())) { if (ShapedType::isDynamic(en.value())) { dims.push_back( b.createOrFold(loc, rankedTensor, en.index())); } else { dims.push_back(b.getIndexAttr(en.value())); } } return dims; } FailureOr mlir::tensor::computeTransposedType(RankedTensorType rankedTensorType, ArrayRef transposeVector) { if (transposeVector.empty()) return rankedTensorType; if (!isPermutationVector(transposeVector) || transposeVector.size() != static_cast(rankedTensorType.getRank())) return failure(); SmallVector transposedShape(rankedTensorType.getShape().begin(), rankedTensorType.getShape().end()); applyPermutationToVector(transposedShape, transposeVector); using RTTBuilder = RankedTensorType::Builder; RankedTensorType transposedTensorType = RTTBuilder(rankedTensorType).setShape(transposedShape); return transposedTensorType; }