//===-- FIROps.cpp --------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ // //===----------------------------------------------------------------------===// #include "flang/Optimizer/Dialect/FIROps.h" #include "flang/Optimizer/Dialect/FIRAttr.h" #include "flang/Optimizer/Dialect/FIROpsSupport.h" #include "flang/Optimizer/Dialect/FIRType.h" #include "flang/Optimizer/Support/Utils.h" #include "mlir/Dialect/CommonFolders.h" #include "mlir/Dialect/StandardOps/IR/Ops.h" #include "mlir/IR/BuiltinOps.h" #include "mlir/IR/Diagnostics.h" #include "mlir/IR/Matchers.h" #include "mlir/IR/PatternMatch.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/ADT/TypeSwitch.h" using namespace fir; /// Return true if a sequence type is of some incomplete size or a record type /// is malformed or contains an incomplete sequence type. An incomplete sequence /// type is one with more unknown extents in the type than have been provided /// via `dynamicExtents`. Sequence types with an unknown rank are incomplete by /// definition. static bool verifyInType(mlir::Type inType, llvm::SmallVectorImpl &visited, unsigned dynamicExtents = 0) { if (auto st = inType.dyn_cast()) { auto shape = st.getShape(); if (shape.size() == 0) return true; for (std::size_t i = 0, end{shape.size()}; i < end; ++i) { if (shape[i] != fir::SequenceType::getUnknownExtent()) continue; if (dynamicExtents-- == 0) return true; } } else if (auto rt = inType.dyn_cast()) { // don't recurse if we're already visiting this one if (llvm::is_contained(visited, rt.getName())) return false; // keep track of record types currently being visited visited.push_back(rt.getName()); for (auto &field : rt.getTypeList()) if (verifyInType(field.second, visited)) return true; visited.pop_back(); } else if (auto rt = inType.dyn_cast()) { return verifyInType(rt.getEleTy(), visited); } return false; } static bool verifyTypeParamCount(mlir::Type inType, unsigned numParams) { auto ty = fir::unwrapSequenceType(inType); if (numParams > 0) { if (auto recTy = ty.dyn_cast()) return numParams != recTy.getNumLenParams(); if (auto chrTy = ty.dyn_cast()) return !(numParams == 1 && chrTy.hasDynamicLen()); return true; } if (auto chrTy = ty.dyn_cast()) return !chrTy.hasConstantLen(); return false; } /// Parser shared by Alloca and Allocmem /// /// operation ::= %res = (`fir.alloca` | `fir.allocmem`) $in_type /// ( `(` $typeparams `)` )? ( `,` $shape )? /// attr-dict-without-keyword template static mlir::ParseResult parseAllocatableOp(FN wrapResultType, mlir::OpAsmParser &parser, mlir::OperationState &result) { mlir::Type intype; if (parser.parseType(intype)) return mlir::failure(); auto &builder = parser.getBuilder(); result.addAttribute("in_type", mlir::TypeAttr::get(intype)); llvm::SmallVector operands; llvm::SmallVector typeVec; bool hasOperands = false; std::int32_t typeparamsSize = 0; if (!parser.parseOptionalLParen()) { // parse the LEN params of the derived type. ( : ) if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || parser.parseColonTypeList(typeVec) || parser.parseRParen()) return mlir::failure(); typeparamsSize = operands.size(); hasOperands = true; } std::int32_t shapeSize = 0; if (!parser.parseOptionalComma()) { // parse size to scale by, vector of n dimensions of type index if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None)) return mlir::failure(); shapeSize = operands.size() - typeparamsSize; auto idxTy = builder.getIndexType(); for (std::int32_t i = typeparamsSize, end = operands.size(); i != end; ++i) typeVec.push_back(idxTy); hasOperands = true; } if (hasOperands && parser.resolveOperands(operands, typeVec, parser.getNameLoc(), result.operands)) return mlir::failure(); mlir::Type restype = wrapResultType(intype); if (!restype) { parser.emitError(parser.getNameLoc(), "invalid allocate type: ") << intype; return mlir::failure(); } result.addAttribute("operand_segment_sizes", builder.getI32VectorAttr({typeparamsSize, shapeSize})); if (parser.parseOptionalAttrDict(result.attributes) || parser.addTypeToList(restype, result.types)) return mlir::failure(); return mlir::success(); } template static void printAllocatableOp(mlir::OpAsmPrinter &p, OP &op) { p << ' ' << op.in_type(); if (!op.typeparams().empty()) { p << '(' << op.typeparams() << " : " << op.typeparams().getTypes() << ')'; } // print the shape of the allocation (if any); all must be index type for (auto sh : op.shape()) { p << ", "; p.printOperand(sh); } p.printOptionalAttrDict(op->getAttrs(), {"in_type", "operand_segment_sizes"}); } //===----------------------------------------------------------------------===// // AllocaOp //===----------------------------------------------------------------------===// /// Create a legal memory reference as return type static mlir::Type wrapAllocaResultType(mlir::Type intype) { // FIR semantics: memory references to memory references are disallowed if (intype.isa()) return {}; return ReferenceType::get(intype); } mlir::Type fir::AllocaOp::getAllocatedType() { return getType().cast().getEleTy(); } mlir::Type fir::AllocaOp::getRefTy(mlir::Type ty) { return ReferenceType::get(ty); } void fir::AllocaOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Type inType, llvm::StringRef uniqName, mlir::ValueRange typeparams, mlir::ValueRange shape, llvm::ArrayRef attributes) { auto nameAttr = builder.getStringAttr(uniqName); build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, /*pinned=*/false, typeparams, shape); result.addAttributes(attributes); } void fir::AllocaOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Type inType, llvm::StringRef uniqName, bool pinned, mlir::ValueRange typeparams, mlir::ValueRange shape, llvm::ArrayRef attributes) { auto nameAttr = builder.getStringAttr(uniqName); build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, {}, pinned, typeparams, shape); result.addAttributes(attributes); } void fir::AllocaOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Type inType, llvm::StringRef uniqName, llvm::StringRef bindcName, mlir::ValueRange typeparams, mlir::ValueRange shape, llvm::ArrayRef attributes) { auto nameAttr = uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); auto bindcAttr = bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, bindcAttr, /*pinned=*/false, typeparams, shape); result.addAttributes(attributes); } void fir::AllocaOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Type inType, llvm::StringRef uniqName, llvm::StringRef bindcName, bool pinned, mlir::ValueRange typeparams, mlir::ValueRange shape, llvm::ArrayRef attributes) { auto nameAttr = uniqName.empty() ? mlir::StringAttr{} : builder.getStringAttr(uniqName); auto bindcAttr = bindcName.empty() ? mlir::StringAttr{} : builder.getStringAttr(bindcName); build(builder, result, wrapAllocaResultType(inType), inType, nameAttr, bindcAttr, pinned, typeparams, shape); result.addAttributes(attributes); } void fir::AllocaOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Type inType, mlir::ValueRange typeparams, mlir::ValueRange shape, llvm::ArrayRef attributes) { build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, /*pinned=*/false, typeparams, shape); result.addAttributes(attributes); } void fir::AllocaOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Type inType, bool pinned, mlir::ValueRange typeparams, mlir::ValueRange shape, llvm::ArrayRef attributes) { build(builder, result, wrapAllocaResultType(inType), inType, {}, {}, pinned, typeparams, shape); result.addAttributes(attributes); } static mlir::LogicalResult verify(fir::AllocaOp &op) { llvm::SmallVector visited; if (verifyInType(op.getInType(), visited, op.numShapeOperands())) return op.emitOpError("invalid type for allocation"); if (verifyTypeParamCount(op.getInType(), op.numLenParams())) return op.emitOpError("LEN params do not correspond to type"); mlir::Type outType = op.getType(); if (!outType.isa()) return op.emitOpError("must be a !fir.ref type"); if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) return op.emitOpError("cannot allocate !fir.box of unknown rank or type"); return mlir::success(); } //===----------------------------------------------------------------------===// // AllocMemOp //===----------------------------------------------------------------------===// /// Create a legal heap reference as return type static mlir::Type wrapAllocMemResultType(mlir::Type intype) { // Fortran semantics: C852 an entity cannot be both ALLOCATABLE and POINTER // 8.5.3 note 1 prohibits ALLOCATABLE procedures as well // FIR semantics: one may not allocate a memory reference value if (intype.isa() || intype.isa() || intype.isa() || intype.isa()) return {}; return HeapType::get(intype); } mlir::Type fir::AllocMemOp::getAllocatedType() { return getType().cast().getEleTy(); } mlir::Type fir::AllocMemOp::getRefTy(mlir::Type ty) { return HeapType::get(ty); } void fir::AllocMemOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Type inType, llvm::StringRef uniqName, mlir::ValueRange typeparams, mlir::ValueRange shape, llvm::ArrayRef attributes) { auto nameAttr = builder.getStringAttr(uniqName); build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, {}, typeparams, shape); result.addAttributes(attributes); } void fir::AllocMemOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Type inType, llvm::StringRef uniqName, llvm::StringRef bindcName, mlir::ValueRange typeparams, mlir::ValueRange shape, llvm::ArrayRef attributes) { auto nameAttr = builder.getStringAttr(uniqName); auto bindcAttr = builder.getStringAttr(bindcName); build(builder, result, wrapAllocMemResultType(inType), inType, nameAttr, bindcAttr, typeparams, shape); result.addAttributes(attributes); } void fir::AllocMemOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Type inType, mlir::ValueRange typeparams, mlir::ValueRange shape, llvm::ArrayRef attributes) { build(builder, result, wrapAllocMemResultType(inType), inType, {}, {}, typeparams, shape); result.addAttributes(attributes); } static mlir::LogicalResult verify(fir::AllocMemOp op) { llvm::SmallVector visited; if (verifyInType(op.getInType(), visited, op.numShapeOperands())) return op.emitOpError("invalid type for allocation"); if (verifyTypeParamCount(op.getInType(), op.numLenParams())) return op.emitOpError("LEN params do not correspond to type"); mlir::Type outType = op.getType(); if (!outType.dyn_cast()) return op.emitOpError("must be a !fir.heap type"); if (fir::isa_unknown_size_box(fir::dyn_cast_ptrEleTy(outType))) return op.emitOpError("cannot allocate !fir.box of unknown rank or type"); return mlir::success(); } //===----------------------------------------------------------------------===// // ArrayCoorOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::ArrayCoorOp op) { auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); auto arrTy = eleTy.dyn_cast(); if (!arrTy) return op.emitOpError("must be a reference to an array"); auto arrDim = arrTy.getDimension(); if (auto shapeOp = op.shape()) { auto shapeTy = shapeOp.getType(); unsigned shapeTyRank = 0; if (auto s = shapeTy.dyn_cast()) { shapeTyRank = s.getRank(); } else if (auto ss = shapeTy.dyn_cast()) { shapeTyRank = ss.getRank(); } else { auto s = shapeTy.cast(); shapeTyRank = s.getRank(); if (!op.memref().getType().isa()) return op.emitOpError("shift can only be provided with fir.box memref"); } if (arrDim && arrDim != shapeTyRank) return op.emitOpError("rank of dimension mismatched"); if (shapeTyRank != op.indices().size()) return op.emitOpError("number of indices do not match dim rank"); } if (auto sliceOp = op.slice()) if (auto sliceTy = sliceOp.getType().dyn_cast()) if (sliceTy.getRank() != arrDim) return op.emitOpError("rank of dimension in slice mismatched"); return mlir::success(); } //===----------------------------------------------------------------------===// // ArrayLoadOp //===----------------------------------------------------------------------===// static mlir::Type adjustedElementType(mlir::Type t) { if (auto ty = t.dyn_cast()) { auto eleTy = ty.getEleTy(); if (fir::isa_char(eleTy)) return eleTy; if (fir::isa_derived(eleTy)) return eleTy; if (eleTy.isa()) return eleTy; } return t; } std::vector fir::ArrayLoadOp::getExtents() { if (auto sh = shape()) if (auto *op = sh.getDefiningOp()) { if (auto shOp = dyn_cast(op)) return shOp.getExtents(); return cast(op).getExtents(); } return {}; } static mlir::LogicalResult verify(fir::ArrayLoadOp op) { auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); auto arrTy = eleTy.dyn_cast(); if (!arrTy) return op.emitOpError("must be a reference to an array"); auto arrDim = arrTy.getDimension(); if (auto shapeOp = op.shape()) { auto shapeTy = shapeOp.getType(); unsigned shapeTyRank = 0; if (auto s = shapeTy.dyn_cast()) { shapeTyRank = s.getRank(); } else if (auto ss = shapeTy.dyn_cast()) { shapeTyRank = ss.getRank(); } else { auto s = shapeTy.cast(); shapeTyRank = s.getRank(); if (!op.memref().getType().isa()) return op.emitOpError("shift can only be provided with fir.box memref"); } if (arrDim && arrDim != shapeTyRank) return op.emitOpError("rank of dimension mismatched"); } if (auto sliceOp = op.slice()) if (auto sliceTy = sliceOp.getType().dyn_cast()) if (sliceTy.getRank() != arrDim) return op.emitOpError("rank of dimension in slice mismatched"); return mlir::success(); } //===----------------------------------------------------------------------===// // ArrayMergeStoreOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::ArrayMergeStoreOp op) { if (!isa(op.original().getDefiningOp())) return op.emitOpError("operand #0 must be result of a fir.array_load op"); if (auto sl = op.slice()) { if (auto *slOp = sl.getDefiningOp()) { auto sliceOp = mlir::cast(slOp); if (!sliceOp.fields().empty()) { // This is an intra-object merge, where the slice is projecting the // subfields that are to be overwritten by the merge operation. auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); if (auto seqTy = eleTy.dyn_cast()) { auto projTy = fir::applyPathToType(seqTy.getEleTy(), sliceOp.fields()); if (fir::unwrapSequenceType(op.original().getType()) != projTy) return op.emitOpError( "type of origin does not match sliced memref type"); if (fir::unwrapSequenceType(op.sequence().getType()) != projTy) return op.emitOpError( "type of sequence does not match sliced memref type"); return mlir::success(); } return op.emitOpError("referenced type is not an array"); } } return mlir::success(); } auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(op.memref().getType()); if (op.original().getType() != eleTy) return op.emitOpError("type of origin does not match memref element type"); if (op.sequence().getType() != eleTy) return op.emitOpError( "type of sequence does not match memref element type"); return mlir::success(); } //===----------------------------------------------------------------------===// // ArrayFetchOp //===----------------------------------------------------------------------===// // Template function used for both array_fetch and array_update verification. template mlir::Type validArraySubobject(A op) { auto ty = op.sequence().getType(); return fir::applyPathToType(ty, op.indices()); } static mlir::LogicalResult verify(fir::ArrayFetchOp op) { auto arrTy = op.sequence().getType().cast(); auto indSize = op.indices().size(); if (indSize < arrTy.getDimension()) return op.emitOpError("number of indices != dimension of array"); if (indSize == arrTy.getDimension() && ::adjustedElementType(op.element().getType()) != arrTy.getEleTy()) return op.emitOpError("return type does not match array"); auto ty = validArraySubobject(op); if (!ty || ty != ::adjustedElementType(op.getType())) return op.emitOpError("return type and/or indices do not type check"); if (!isa(op.sequence().getDefiningOp())) return op.emitOpError("argument #0 must be result of fir.array_load"); return mlir::success(); } //===----------------------------------------------------------------------===// // ArrayUpdateOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::ArrayUpdateOp op) { auto arrTy = op.sequence().getType().cast(); auto indSize = op.indices().size(); if (indSize < arrTy.getDimension()) return op.emitOpError("number of indices != dimension of array"); if (indSize == arrTy.getDimension() && ::adjustedElementType(op.merge().getType()) != arrTy.getEleTy()) return op.emitOpError("merged value does not have element type"); auto ty = validArraySubobject(op); if (!ty || ty != ::adjustedElementType(op.merge().getType())) return op.emitOpError("merged value and/or indices do not type check"); return mlir::success(); } //===----------------------------------------------------------------------===// // ArrayModifyOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::ArrayModifyOp op) { auto arrTy = op.sequence().getType().cast(); auto indSize = op.indices().size(); if (indSize < arrTy.getDimension()) return op.emitOpError("number of indices must match array dimension"); return mlir::success(); } //===----------------------------------------------------------------------===// // BoxAddrOp //===----------------------------------------------------------------------===// mlir::OpFoldResult fir::BoxAddrOp::fold(llvm::ArrayRef opnds) { if (auto v = val().getDefiningOp()) { if (auto box = dyn_cast(v)) return box.memref(); if (auto box = dyn_cast(v)) return box.memref(); } return {}; } //===----------------------------------------------------------------------===// // BoxCharLenOp //===----------------------------------------------------------------------===// mlir::OpFoldResult fir::BoxCharLenOp::fold(llvm::ArrayRef opnds) { if (auto v = val().getDefiningOp()) { if (auto box = dyn_cast(v)) return box.len(); } return {}; } //===----------------------------------------------------------------------===// // BoxDimsOp //===----------------------------------------------------------------------===// /// Get the result types packed in a tuple tuple mlir::Type fir::BoxDimsOp::getTupleType() { // note: triple, but 4 is nearest power of 2 llvm::SmallVector triple{ getResult(0).getType(), getResult(1).getType(), getResult(2).getType()}; return mlir::TupleType::get(getContext(), triple); } //===----------------------------------------------------------------------===// // CallOp //===----------------------------------------------------------------------===// mlir::FunctionType fir::CallOp::getFunctionType() { return mlir::FunctionType::get(getContext(), getOperandTypes(), getResultTypes()); } static void printCallOp(mlir::OpAsmPrinter &p, fir::CallOp &op) { auto callee = op.callee(); bool isDirect = callee.hasValue(); p << ' '; if (isDirect) p << callee.getValue(); else p << op.getOperand(0); p << '(' << op->getOperands().drop_front(isDirect ? 0 : 1) << ')'; p.printOptionalAttrDict(op->getAttrs(), {"callee"}); auto resultTypes{op.getResultTypes()}; llvm::SmallVector argTypes( llvm::drop_begin(op.getOperandTypes(), isDirect ? 0 : 1)); p << " : " << FunctionType::get(op.getContext(), argTypes, resultTypes); } static mlir::ParseResult parseCallOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { llvm::SmallVector operands; if (parser.parseOperandList(operands)) return mlir::failure(); mlir::NamedAttrList attrs; mlir::SymbolRefAttr funcAttr; bool isDirect = operands.empty(); if (isDirect) if (parser.parseAttribute(funcAttr, "callee", attrs)) return mlir::failure(); Type type; if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || parser.parseOptionalAttrDict(attrs) || parser.parseColon() || parser.parseType(type)) return mlir::failure(); auto funcType = type.dyn_cast(); if (!funcType) return parser.emitError(parser.getNameLoc(), "expected function type"); if (isDirect) { if (parser.resolveOperands(operands, funcType.getInputs(), parser.getNameLoc(), result.operands)) return mlir::failure(); } else { auto funcArgs = llvm::ArrayRef(operands).drop_front(); if (parser.resolveOperand(operands[0], funcType, result.operands) || parser.resolveOperands(funcArgs, funcType.getInputs(), parser.getNameLoc(), result.operands)) return mlir::failure(); } result.addTypes(funcType.getResults()); result.attributes = attrs; return mlir::success(); } void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::FuncOp callee, mlir::ValueRange operands) { result.addOperands(operands); result.addAttribute(getCalleeAttrName(), SymbolRefAttr::get(callee)); result.addTypes(callee.getType().getResults()); } void fir::CallOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::SymbolRefAttr callee, llvm::ArrayRef results, mlir::ValueRange operands) { result.addOperands(operands); result.addAttribute(getCalleeAttrName(), callee); result.addTypes(results); } //===----------------------------------------------------------------------===// // CmpOp //===----------------------------------------------------------------------===// template static void printCmpOp(OpAsmPrinter &p, OPTY op) { p << ' '; auto predSym = mlir::symbolizeCmpFPredicate( op->template getAttrOfType( OPTY::getPredicateAttrName()) .getInt()); assert(predSym.hasValue() && "invalid symbol value for predicate"); p << '"' << mlir::stringifyCmpFPredicate(predSym.getValue()) << '"' << ", "; p.printOperand(op.lhs()); p << ", "; p.printOperand(op.rhs()); p.printOptionalAttrDict(op->getAttrs(), /*elidedAttrs=*/{OPTY::getPredicateAttrName()}); p << " : " << op.lhs().getType(); } template static mlir::ParseResult parseCmpOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { llvm::SmallVector ops; mlir::NamedAttrList attrs; mlir::Attribute predicateNameAttr; mlir::Type type; if (parser.parseAttribute(predicateNameAttr, OPTY::getPredicateAttrName(), attrs) || parser.parseComma() || parser.parseOperandList(ops, 2) || parser.parseOptionalAttrDict(attrs) || parser.parseColonType(type) || parser.resolveOperands(ops, type, result.operands)) return failure(); if (!predicateNameAttr.isa()) return parser.emitError(parser.getNameLoc(), "expected string comparison predicate attribute"); // Rewrite string attribute to an enum value. llvm::StringRef predicateName = predicateNameAttr.cast().getValue(); auto predicate = fir::CmpcOp::getPredicateByName(predicateName); auto builder = parser.getBuilder(); mlir::Type i1Type = builder.getI1Type(); attrs.set(OPTY::getPredicateAttrName(), builder.getI64IntegerAttr(static_cast(predicate))); result.attributes = attrs; result.addTypes({i1Type}); return success(); } //===----------------------------------------------------------------------===// // CharConvertOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::CharConvertOp op) { auto unwrap = [&](mlir::Type t) { t = fir::unwrapSequenceType(fir::dyn_cast_ptrEleTy(t)); return t.dyn_cast(); }; auto inTy = unwrap(op.from().getType()); auto outTy = unwrap(op.to().getType()); if (!(inTy && outTy)) return op.emitOpError("not a reference to a character"); if (inTy.getFKind() == outTy.getFKind()) return op.emitOpError("buffers must have different KIND values"); return mlir::success(); } //===----------------------------------------------------------------------===// // CmpcOp //===----------------------------------------------------------------------===// void fir::buildCmpCOp(OpBuilder &builder, OperationState &result, CmpFPredicate predicate, Value lhs, Value rhs) { result.addOperands({lhs, rhs}); result.types.push_back(builder.getI1Type()); result.addAttribute( fir::CmpcOp::getPredicateAttrName(), builder.getI64IntegerAttr(static_cast(predicate))); } mlir::CmpFPredicate fir::CmpcOp::getPredicateByName(llvm::StringRef name) { auto pred = mlir::symbolizeCmpFPredicate(name); assert(pred.hasValue() && "invalid predicate name"); return pred.getValue(); } static void printCmpcOp(OpAsmPrinter &p, fir::CmpcOp op) { printCmpOp(p, op); } mlir::ParseResult fir::parseCmpcOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { return parseCmpOp(parser, result); } //===----------------------------------------------------------------------===// // ConstcOp //===----------------------------------------------------------------------===// static mlir::ParseResult parseConstcOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { fir::RealAttr realp; fir::RealAttr imagp; mlir::Type type; if (parser.parseLParen() || parser.parseAttribute(realp, fir::ConstcOp::realAttrName(), result.attributes) || parser.parseComma() || parser.parseAttribute(imagp, fir::ConstcOp::imagAttrName(), result.attributes) || parser.parseRParen() || parser.parseColonType(type) || parser.addTypesToList(type, result.types)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::ConstcOp &op) { p << " (0x"; auto f1 = op.getOperation() ->getAttr(fir::ConstcOp::realAttrName()) .cast(); auto i1 = f1.getValue().bitcastToAPInt(); p.getStream().write_hex(i1.getZExtValue()); p << ", 0x"; auto f2 = op.getOperation() ->getAttr(fir::ConstcOp::imagAttrName()) .cast(); auto i2 = f2.getValue().bitcastToAPInt(); p.getStream().write_hex(i2.getZExtValue()); p << ") : "; p.printType(op.getType()); } static mlir::LogicalResult verify(fir::ConstcOp &op) { if (!op.getType().isa()) return op.emitOpError("must be a !fir.complex type"); return mlir::success(); } //===----------------------------------------------------------------------===// // ConvertOp //===----------------------------------------------------------------------===// void fir::ConvertOp::getCanonicalizationPatterns( OwningRewritePatternList &results, MLIRContext *context) {} mlir::OpFoldResult fir::ConvertOp::fold(llvm::ArrayRef opnds) { if (value().getType() == getType()) return value(); if (matchPattern(value(), m_Op())) { auto inner = cast(value().getDefiningOp()); // (convert (convert 'a : logical -> i1) : i1 -> logical) ==> forward 'a if (auto toTy = getType().dyn_cast()) if (auto fromTy = inner.value().getType().dyn_cast()) if (inner.getType().isa() && (toTy == fromTy)) return inner.value(); // (convert (convert 'a : i1 -> logical) : logical -> i1) ==> forward 'a if (auto toTy = getType().dyn_cast()) if (auto fromTy = inner.value().getType().dyn_cast()) if (inner.getType().isa() && (toTy == fromTy) && (fromTy.getWidth() == 1)) return inner.value(); } return {}; } bool fir::ConvertOp::isIntegerCompatible(mlir::Type ty) { return ty.isa() || ty.isa() || ty.isa() || ty.isa(); } bool fir::ConvertOp::isFloatCompatible(mlir::Type ty) { return ty.isa() || ty.isa(); } bool fir::ConvertOp::isPointerCompatible(mlir::Type ty) { return ty.isa() || ty.isa() || ty.isa() || ty.isa() || ty.isa() || ty.isa(); } static mlir::LogicalResult verify(fir::ConvertOp &op) { auto inType = op.value().getType(); auto outType = op.getType(); if (inType == outType) return mlir::success(); if ((op.isPointerCompatible(inType) && op.isPointerCompatible(outType)) || (op.isIntegerCompatible(inType) && op.isIntegerCompatible(outType)) || (op.isIntegerCompatible(inType) && op.isFloatCompatible(outType)) || (op.isFloatCompatible(inType) && op.isIntegerCompatible(outType)) || (op.isFloatCompatible(inType) && op.isFloatCompatible(outType)) || (op.isIntegerCompatible(inType) && op.isPointerCompatible(outType)) || (op.isPointerCompatible(inType) && op.isIntegerCompatible(outType)) || (inType.isa() && outType.isa()) || (fir::isa_complex(inType) && fir::isa_complex(outType))) return mlir::success(); return op.emitOpError("invalid type conversion"); } //===----------------------------------------------------------------------===// // CoordinateOp //===----------------------------------------------------------------------===// static void print(mlir::OpAsmPrinter &p, fir::CoordinateOp op) { p << ' ' << op.ref() << ", " << op.coor(); p.printOptionalAttrDict(op->getAttrs(), /*elideAttrs=*/{"baseType"}); p << " : "; p.printFunctionalType(op.getOperandTypes(), op->getResultTypes()); } static mlir::ParseResult parseCoordinateCustom(mlir::OpAsmParser &parser, mlir::OperationState &result) { mlir::OpAsmParser::OperandType memref; if (parser.parseOperand(memref) || parser.parseComma()) return mlir::failure(); llvm::SmallVector coorOperands; if (parser.parseOperandList(coorOperands)) return mlir::failure(); llvm::SmallVector allOperands; allOperands.push_back(memref); allOperands.append(coorOperands.begin(), coorOperands.end()); mlir::FunctionType funcTy; auto loc = parser.getCurrentLocation(); if (parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(funcTy) || parser.resolveOperands(allOperands, funcTy.getInputs(), loc, result.operands)) return failure(); parser.addTypesToList(funcTy.getResults(), result.types); result.addAttribute("baseType", mlir::TypeAttr::get(funcTy.getInput(0))); return mlir::success(); } static mlir::LogicalResult verify(fir::CoordinateOp op) { auto refTy = op.ref().getType(); if (fir::isa_ref_type(refTy)) { auto eleTy = fir::dyn_cast_ptrEleTy(refTy); if (auto arrTy = eleTy.dyn_cast()) { if (arrTy.hasUnknownShape()) return op.emitOpError("cannot find coordinate in unknown shape"); if (arrTy.getConstantRows() < arrTy.getDimension() - 1) return op.emitOpError("cannot find coordinate with unknown extents"); } if (!(fir::isa_aggregate(eleTy) || fir::isa_complex(eleTy) || fir::isa_char_string(eleTy))) return op.emitOpError("cannot apply coordinate_of to this type"); } // Recovering a LEN type parameter only makes sense from a boxed value. For a // bare reference, the LEN type parameters must be passed as additional // arguments to `op`. for (auto co : op.coor()) if (dyn_cast_or_null(co.getDefiningOp())) { if (op.getNumOperands() != 2) return op.emitOpError("len_param_index must be last argument"); if (!op.ref().getType().isa()) return op.emitOpError("len_param_index must be used on box type"); } return mlir::success(); } //===----------------------------------------------------------------------===// // DispatchOp //===----------------------------------------------------------------------===// mlir::FunctionType fir::DispatchOp::getFunctionType() { return mlir::FunctionType::get(getContext(), getOperandTypes(), getResultTypes()); } static mlir::ParseResult parseDispatchOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { mlir::FunctionType calleeType; llvm::SmallVector operands; auto calleeLoc = parser.getNameLoc(); llvm::StringRef calleeName; if (failed(parser.parseOptionalKeyword(&calleeName))) { mlir::StringAttr calleeAttr; if (parser.parseAttribute(calleeAttr, fir::DispatchOp::getMethodAttrName(), result.attributes)) return mlir::failure(); } else { result.addAttribute(fir::DispatchOp::getMethodAttrName(), parser.getBuilder().getStringAttr(calleeName)); } if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::Paren) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(calleeType) || parser.addTypesToList(calleeType.getResults(), result.types) || parser.resolveOperands(operands, calleeType.getInputs(), calleeLoc, result.operands)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::DispatchOp &op) { p << ' ' << op.getOperation()->getAttr(fir::DispatchOp::getMethodAttrName()) << '('; p.printOperand(op.object()); if (!op.args().empty()) { p << ", "; p.printOperands(op.args()); } p << ") : "; p.printFunctionalType(op.getOperation()->getOperandTypes(), op.getOperation()->getResultTypes()); } //===----------------------------------------------------------------------===// // DispatchTableOp //===----------------------------------------------------------------------===// void fir::DispatchTableOp::appendTableEntry(mlir::Operation *op) { assert(mlir::isa(*op) && "operation must be a DTEntryOp"); auto &block = getBlock(); block.getOperations().insert(block.end(), op); } static mlir::ParseResult parseDispatchTableOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { // Parse the name as a symbol reference attribute. SymbolRefAttr nameAttr; if (parser.parseAttribute(nameAttr, mlir::SymbolTable::getSymbolAttrName(), result.attributes)) return failure(); // Convert the parsed name attr into a string attr. result.attributes.set(mlir::SymbolTable::getSymbolAttrName(), nameAttr.getRootReference()); // Parse the optional table body. mlir::Region *body = result.addRegion(); OptionalParseResult parseResult = parser.parseOptionalRegion(*body); if (parseResult.hasValue() && failed(*parseResult)) return mlir::failure(); fir::DispatchTableOp::ensureTerminator(*body, parser.getBuilder(), result.location); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::DispatchTableOp &op) { auto tableName = op.getOperation() ->getAttrOfType(mlir::SymbolTable::getSymbolAttrName()) .getValue(); p << " @" << tableName; Region &body = op.getOperation()->getRegion(0); if (!body.empty()) p.printRegion(body, /*printEntryBlockArgs=*/false, /*printBlockTerminators=*/false); } static mlir::LogicalResult verify(fir::DispatchTableOp &op) { for (auto &op : op.getBlock()) if (!(isa(op) || isa(op))) return op.emitOpError("dispatch table must contain dt_entry"); return mlir::success(); } //===----------------------------------------------------------------------===// // EmboxOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::EmboxOp op) { auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); bool isArray = false; if (auto seqTy = eleTy.dyn_cast()) { eleTy = seqTy.getEleTy(); isArray = true; } if (op.hasLenParams()) { auto lenPs = op.numLenParams(); if (auto rt = eleTy.dyn_cast()) { if (lenPs != rt.getNumLenParams()) return op.emitOpError("number of LEN params does not correspond" " to the !fir.type type"); } else if (auto strTy = eleTy.dyn_cast()) { if (strTy.getLen() != fir::CharacterType::unknownLen()) return op.emitOpError("CHARACTER already has static LEN"); } else { return op.emitOpError("LEN parameters require CHARACTER or derived type"); } for (auto lp : op.typeparams()) if (!fir::isa_integer(lp.getType())) return op.emitOpError("LEN parameters must be integral type"); } if (op.getShape() && !isArray) return op.emitOpError("shape must not be provided for a scalar"); if (op.getSlice() && !isArray) return op.emitOpError("slice must not be provided for a scalar"); return mlir::success(); } //===----------------------------------------------------------------------===// // EmboxCharOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::EmboxCharOp &op) { auto eleTy = fir::dyn_cast_ptrEleTy(op.memref().getType()); if (!eleTy.dyn_cast_or_null()) return mlir::failure(); return mlir::success(); } //===----------------------------------------------------------------------===// // EmboxProcOp //===----------------------------------------------------------------------===// static mlir::ParseResult parseEmboxProcOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { mlir::SymbolRefAttr procRef; if (parser.parseAttribute(procRef, "funcname", result.attributes)) return mlir::failure(); bool hasTuple = false; mlir::OpAsmParser::OperandType tupleRef; if (!parser.parseOptionalComma()) { if (parser.parseOperand(tupleRef)) return mlir::failure(); hasTuple = true; } mlir::FunctionType type; if (parser.parseColon() || parser.parseLParen() || parser.parseType(type)) return mlir::failure(); result.addAttribute("functype", mlir::TypeAttr::get(type)); if (hasTuple) { mlir::Type tupleType; if (parser.parseComma() || parser.parseType(tupleType) || parser.resolveOperand(tupleRef, tupleType, result.operands)) return mlir::failure(); } mlir::Type boxType; if (parser.parseRParen() || parser.parseArrow() || parser.parseType(boxType) || parser.addTypesToList(boxType, result.types)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::EmboxProcOp &op) { p << ' ' << op.getOperation()->getAttr("funcname"); auto h = op.host(); if (h) { p << ", "; p.printOperand(h); } p << " : (" << op.getOperation()->getAttr("functype"); if (h) p << ", " << h.getType(); p << ") -> " << op.getType(); } static mlir::LogicalResult verify(fir::EmboxProcOp &op) { // host bindings (optional) must be a reference to a tuple if (auto h = op.host()) { if (auto r = h.getType().dyn_cast()) { if (!r.getEleTy().dyn_cast()) return mlir::failure(); } else { return mlir::failure(); } } return mlir::success(); } //===----------------------------------------------------------------------===// // GenTypeDescOp //===----------------------------------------------------------------------===// void fir::GenTypeDescOp::build(OpBuilder &, OperationState &result, mlir::TypeAttr inty) { result.addAttribute("in_type", inty); result.addTypes(TypeDescType::get(inty.getValue())); } static mlir::ParseResult parseGenTypeDescOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { mlir::Type intype; if (parser.parseType(intype)) return mlir::failure(); result.addAttribute("in_type", mlir::TypeAttr::get(intype)); mlir::Type restype = TypeDescType::get(intype); if (parser.addTypeToList(restype, result.types)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::GenTypeDescOp &op) { p << ' ' << op.getOperation()->getAttr("in_type"); p.printOptionalAttrDict(op.getOperation()->getAttrs(), {"in_type"}); } static mlir::LogicalResult verify(fir::GenTypeDescOp &op) { mlir::Type resultTy = op.getType(); if (auto tdesc = resultTy.dyn_cast()) { if (tdesc.getOfTy() != op.getInType()) return op.emitOpError("wrapped type mismatched"); } else { return op.emitOpError("must be !fir.tdesc type"); } return mlir::success(); } //===----------------------------------------------------------------------===// // GlobalOp //===----------------------------------------------------------------------===// static ParseResult parseGlobalOp(OpAsmParser &parser, OperationState &result) { // Parse the optional linkage llvm::StringRef linkage; auto &builder = parser.getBuilder(); if (mlir::succeeded(parser.parseOptionalKeyword(&linkage))) { if (fir::GlobalOp::verifyValidLinkage(linkage)) return mlir::failure(); mlir::StringAttr linkAttr = builder.getStringAttr(linkage); result.addAttribute(fir::GlobalOp::linkageAttrName(), linkAttr); } // Parse the name as a symbol reference attribute. mlir::SymbolRefAttr nameAttr; if (parser.parseAttribute(nameAttr, fir::GlobalOp::symbolAttrName(), result.attributes)) return mlir::failure(); result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), nameAttr.getRootReference()); bool simpleInitializer = false; if (mlir::succeeded(parser.parseOptionalLParen())) { Attribute attr; if (parser.parseAttribute(attr, "initVal", result.attributes) || parser.parseRParen()) return mlir::failure(); simpleInitializer = true; } if (succeeded(parser.parseOptionalKeyword("constant"))) { // if "constant" keyword then mark this as a constant, not a variable result.addAttribute("constant", builder.getUnitAttr()); } mlir::Type globalType; if (parser.parseColonType(globalType)) return mlir::failure(); result.addAttribute(fir::GlobalOp::typeAttrName(result.name), mlir::TypeAttr::get(globalType)); if (simpleInitializer) { result.addRegion(); } else { // Parse the optional initializer body. auto parseResult = parser.parseOptionalRegion( *result.addRegion(), /*arguments=*/llvm::None, /*argTypes=*/llvm::None); if (parseResult.hasValue() && mlir::failed(*parseResult)) return mlir::failure(); } return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::GlobalOp &op) { if (op.linkName().hasValue()) p << ' ' << op.linkName().getValue(); p << ' '; p.printAttributeWithoutType( op.getOperation()->getAttr(fir::GlobalOp::symbolAttrName())); if (auto val = op.getValueOrNull()) p << '(' << val << ')'; if (op.getOperation()->getAttr(fir::GlobalOp::getConstantAttrName())) p << " constant"; p << " : "; p.printType(op.getType()); if (op.hasInitializationBody()) p.printRegion(op.getOperation()->getRegion(0), /*printEntryBlockArgs=*/false, /*printBlockTerminators=*/true); } void fir::GlobalOp::appendInitialValue(mlir::Operation *op) { getBlock().getOperations().push_back(op); } void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, StringRef name, bool isConstant, Type type, Attribute initialVal, StringAttr linkage, ArrayRef attrs) { result.addRegion(); result.addAttribute(typeAttrName(result.name), mlir::TypeAttr::get(type)); result.addAttribute(mlir::SymbolTable::getSymbolAttrName(), builder.getStringAttr(name)); result.addAttribute(symbolAttrName(), SymbolRefAttr::get(builder.getContext(), name)); if (isConstant) result.addAttribute(constantAttrName(result.name), builder.getUnitAttr()); if (initialVal) result.addAttribute(initValAttrName(result.name), initialVal); if (linkage) result.addAttribute(linkageAttrName(), linkage); result.attributes.append(attrs.begin(), attrs.end()); } void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, StringRef name, Type type, Attribute initialVal, StringAttr linkage, ArrayRef attrs) { build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); } void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, StringRef name, bool isConstant, Type type, StringAttr linkage, ArrayRef attrs) { build(builder, result, name, isConstant, type, {}, linkage, attrs); } void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, StringRef name, Type type, StringAttr linkage, ArrayRef attrs) { build(builder, result, name, /*isConstant=*/false, type, {}, linkage, attrs); } void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, StringRef name, bool isConstant, Type type, ArrayRef attrs) { build(builder, result, name, isConstant, type, StringAttr{}, attrs); } void fir::GlobalOp::build(mlir::OpBuilder &builder, OperationState &result, StringRef name, Type type, ArrayRef attrs) { build(builder, result, name, /*isConstant=*/false, type, attrs); } mlir::ParseResult fir::GlobalOp::verifyValidLinkage(StringRef linkage) { // Supporting only a subset of the LLVM linkage types for now static const char *validNames[] = {"common", "internal", "linkonce", "weak"}; return mlir::success(llvm::is_contained(validNames, linkage)); } template static void appendAsAttribute(llvm::SmallVectorImpl &attrs, mlir::Value val) { if (auto *op = val.getDefiningOp()) { if (auto cop = mlir::dyn_cast(op)) { // append the integer constant value if (auto iattr = cop.getValue().dyn_cast()) { attrs.push_back(iattr); return; } } else if (auto fld = mlir::dyn_cast(op)) { if constexpr (AllowFields) { // append the field name and the record type attrs.push_back(fld.field_idAttr()); attrs.push_back(fld.on_typeAttr()); return; } } } llvm::report_fatal_error("cannot build Op with these arguments"); } template static mlir::ArrayAttr collectAsAttributes(mlir::MLIRContext *ctxt, OperationState &result, llvm::ArrayRef inds) { llvm::SmallVector attrs; for (auto v : inds) appendAsAttribute(attrs, v); assert(!attrs.empty()); return mlir::ArrayAttr::get(ctxt, attrs); } //===----------------------------------------------------------------------===// // GlobalLenOp //===----------------------------------------------------------------------===// static mlir::ParseResult parseGlobalLenOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { llvm::StringRef fieldName; if (failed(parser.parseOptionalKeyword(&fieldName))) { mlir::StringAttr fieldAttr; if (parser.parseAttribute(fieldAttr, fir::GlobalLenOp::lenParamAttrName(), result.attributes)) return mlir::failure(); } else { result.addAttribute(fir::GlobalLenOp::lenParamAttrName(), parser.getBuilder().getStringAttr(fieldName)); } mlir::IntegerAttr constant; if (parser.parseComma() || parser.parseAttribute(constant, fir::GlobalLenOp::intAttrName(), result.attributes)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::GlobalLenOp &op) { p << ' ' << op.getOperation()->getAttr(fir::GlobalLenOp::lenParamAttrName()) << ", " << op.getOperation()->getAttr(fir::GlobalLenOp::intAttrName()); } //===----------------------------------------------------------------------===// // ExtractValueOp //===----------------------------------------------------------------------===// void fir::ExtractValueOp::build(mlir::OpBuilder &builder, OperationState &result, mlir::Type resTy, mlir::Value aggVal, llvm::ArrayRef inds) { auto aa = collectAsAttributes<>(builder.getContext(), result, inds); build(builder, result, resTy, aggVal, aa); } //===----------------------------------------------------------------------===// // FieldIndexOp //===----------------------------------------------------------------------===// static mlir::ParseResult parseFieldIndexOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { llvm::StringRef fieldName; auto &builder = parser.getBuilder(); mlir::Type recty; if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || parser.parseType(recty)) return mlir::failure(); result.addAttribute(fir::FieldIndexOp::fieldAttrName(), builder.getStringAttr(fieldName)); if (!recty.dyn_cast()) return mlir::failure(); result.addAttribute(fir::FieldIndexOp::typeAttrName(), mlir::TypeAttr::get(recty)); if (!parser.parseOptionalLParen()) { llvm::SmallVector operands; llvm::SmallVector types; auto loc = parser.getNameLoc(); if (parser.parseOperandList(operands, mlir::OpAsmParser::Delimiter::None) || parser.parseColonTypeList(types) || parser.parseRParen() || parser.resolveOperands(operands, types, loc, result.operands)) return mlir::failure(); } mlir::Type fieldType = fir::FieldType::get(builder.getContext()); if (parser.addTypeToList(fieldType, result.types)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::FieldIndexOp &op) { p << ' ' << op.getOperation() ->getAttrOfType(fir::FieldIndexOp::fieldAttrName()) .getValue() << ", " << op.getOperation()->getAttr(fir::FieldIndexOp::typeAttrName()); if (op.getNumOperands()) { p << '('; p.printOperands(op.typeparams()); const auto *sep = ") : "; for (auto op : op.typeparams()) { p << sep; if (op) p.printType(op.getType()); else p << "()"; sep = ", "; } } } void fir::FieldIndexOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, llvm::StringRef fieldName, mlir::Type recTy, mlir::ValueRange operands) { result.addAttribute(fieldAttrName(), builder.getStringAttr(fieldName)); result.addAttribute(typeAttrName(), TypeAttr::get(recTy)); result.addOperands(operands); } //===----------------------------------------------------------------------===// // InsertOnRangeOp //===----------------------------------------------------------------------===// void fir::InsertOnRangeOp::build(mlir::OpBuilder &builder, OperationState &result, mlir::Type resTy, mlir::Value aggVal, mlir::Value eleVal, llvm::ArrayRef inds) { auto aa = collectAsAttributes(builder.getContext(), result, inds); build(builder, result, resTy, aggVal, eleVal, aa); } /// Range bounds must be nonnegative, and the range must not be empty. static mlir::LogicalResult verify(fir::InsertOnRangeOp op) { if (op.coor().size() < 2 || op.coor().size() % 2 != 0) return op.emitOpError("has uneven number of values in ranges"); bool rangeIsKnownToBeNonempty = false; for (auto i = op.coor().end(), b = op.coor().begin(); i != b;) { int64_t ub = (*--i).cast().getInt(); int64_t lb = (*--i).cast().getInt(); if (lb < 0 || ub < 0) return op.emitOpError("negative range bound"); if (rangeIsKnownToBeNonempty) continue; if (lb > ub) return op.emitOpError("empty range"); rangeIsKnownToBeNonempty = lb < ub; } return mlir::success(); } //===----------------------------------------------------------------------===// // InsertValueOp //===----------------------------------------------------------------------===// void fir::InsertValueOp::build(mlir::OpBuilder &builder, OperationState &result, mlir::Type resTy, mlir::Value aggVal, mlir::Value eleVal, llvm::ArrayRef inds) { auto aa = collectAsAttributes<>(builder.getContext(), result, inds); build(builder, result, resTy, aggVal, eleVal, aa); } static bool checkIsIntegerConstant(mlir::Attribute attr, int64_t conVal) { if (auto iattr = attr.dyn_cast()) return iattr.getInt() == conVal; return false; } static bool isZero(mlir::Attribute a) { return checkIsIntegerConstant(a, 0); } static bool isOne(mlir::Attribute a) { return checkIsIntegerConstant(a, 1); } // Undo some complex patterns created in the front-end and turn them back into // complex ops. template struct UndoComplexPattern : public mlir::RewritePattern { UndoComplexPattern(mlir::MLIRContext *ctx) : mlir::RewritePattern("fir.insert_value", 2, ctx) {} mlir::LogicalResult matchAndRewrite(mlir::Operation *op, mlir::PatternRewriter &rewriter) const override { auto insval = dyn_cast_or_null(op); if (!insval || !insval.getType().isa()) return mlir::failure(); auto insval2 = dyn_cast_or_null(insval.adt().getDefiningOp()); if (!insval2 || !isa(insval2.adt().getDefiningOp())) return mlir::failure(); auto binf = dyn_cast_or_null(insval.val().getDefiningOp()); auto binf2 = dyn_cast_or_null(insval2.val().getDefiningOp()); if (!binf || !binf2 || insval.coor().size() != 1 || !isOne(insval.coor()[0]) || insval2.coor().size() != 1 || !isZero(insval2.coor()[0])) return mlir::failure(); auto eai = dyn_cast_or_null(binf.lhs().getDefiningOp()); auto ebi = dyn_cast_or_null(binf.rhs().getDefiningOp()); auto ear = dyn_cast_or_null(binf2.lhs().getDefiningOp()); auto ebr = dyn_cast_or_null(binf2.rhs().getDefiningOp()); if (!eai || !ebi || !ear || !ebr || ear.adt() != eai.adt() || ebr.adt() != ebi.adt() || eai.coor().size() != 1 || !isOne(eai.coor()[0]) || ebi.coor().size() != 1 || !isOne(ebi.coor()[0]) || ear.coor().size() != 1 || !isZero(ear.coor()[0]) || ebr.coor().size() != 1 || !isZero(ebr.coor()[0])) return mlir::failure(); rewriter.replaceOpWithNewOp(op, ear.adt(), ebr.adt()); return mlir::success(); } }; void fir::InsertValueOp::getCanonicalizationPatterns( mlir::OwningRewritePatternList &results, mlir::MLIRContext *context) { results.insert, UndoComplexPattern>(context); } //===----------------------------------------------------------------------===// // IterWhileOp //===----------------------------------------------------------------------===// void fir::IterWhileOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Value lb, mlir::Value ub, mlir::Value step, mlir::Value iterate, bool finalCountValue, mlir::ValueRange iterArgs, llvm::ArrayRef attributes) { result.addOperands({lb, ub, step, iterate}); if (finalCountValue) { result.addTypes(builder.getIndexType()); result.addAttribute(getFinalValueAttrName(), builder.getUnitAttr()); } result.addTypes(iterate.getType()); result.addOperands(iterArgs); for (auto v : iterArgs) result.addTypes(v.getType()); mlir::Region *bodyRegion = result.addRegion(); bodyRegion->push_back(new Block{}); bodyRegion->front().addArgument(builder.getIndexType()); bodyRegion->front().addArgument(iterate.getType()); bodyRegion->front().addArguments(iterArgs.getTypes()); result.addAttributes(attributes); } static mlir::ParseResult parseIterWhileOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { auto &builder = parser.getBuilder(); mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; if (parser.parseLParen() || parser.parseRegionArgument(inductionVariable) || parser.parseEqual()) return mlir::failure(); // Parse loop bounds. auto indexType = builder.getIndexType(); auto i1Type = builder.getIntegerType(1); if (parser.parseOperand(lb) || parser.resolveOperand(lb, indexType, result.operands) || parser.parseKeyword("to") || parser.parseOperand(ub) || parser.resolveOperand(ub, indexType, result.operands) || parser.parseKeyword("step") || parser.parseOperand(step) || parser.parseRParen() || parser.resolveOperand(step, indexType, result.operands)) return mlir::failure(); mlir::OpAsmParser::OperandType iterateVar, iterateInput; if (parser.parseKeyword("and") || parser.parseLParen() || parser.parseRegionArgument(iterateVar) || parser.parseEqual() || parser.parseOperand(iterateInput) || parser.parseRParen() || parser.resolveOperand(iterateInput, i1Type, result.operands)) return mlir::failure(); // Parse the initial iteration arguments. llvm::SmallVector regionArgs; auto prependCount = false; // Induction variable. regionArgs.push_back(inductionVariable); regionArgs.push_back(iterateVar); if (succeeded(parser.parseOptionalKeyword("iter_args"))) { llvm::SmallVector operands; llvm::SmallVector regionTypes; // Parse assignment list and results type list. if (parser.parseAssignmentList(regionArgs, operands) || parser.parseArrowTypeList(regionTypes)) return failure(); if (regionTypes.size() == operands.size() + 2) prependCount = true; llvm::ArrayRef resTypes = regionTypes; resTypes = prependCount ? resTypes.drop_front(2) : resTypes; // Resolve input operands. for (auto operandType : llvm::zip(operands, resTypes)) if (parser.resolveOperand(std::get<0>(operandType), std::get<1>(operandType), result.operands)) return failure(); if (prependCount) { result.addTypes(regionTypes); } else { result.addTypes(i1Type); result.addTypes(resTypes); } } else if (succeeded(parser.parseOptionalArrow())) { llvm::SmallVector typeList; if (parser.parseLParen() || parser.parseTypeList(typeList) || parser.parseRParen()) return failure(); // Type list must be "(index, i1)". if (typeList.size() != 2 || !typeList[0].isa() || !typeList[1].isSignlessInteger(1)) return failure(); result.addTypes(typeList); prependCount = true; } else { result.addTypes(i1Type); } if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) return mlir::failure(); llvm::SmallVector argTypes; // Induction variable (hidden) if (prependCount) result.addAttribute(IterWhileOp::getFinalValueAttrName(), builder.getUnitAttr()); else argTypes.push_back(indexType); // Loop carried variables (including iterate) argTypes.append(result.types.begin(), result.types.end()); // Parse the body region. auto *body = result.addRegion(); if (regionArgs.size() != argTypes.size()) return parser.emitError( parser.getNameLoc(), "mismatch in number of loop-carried values and defined values"); if (parser.parseRegion(*body, regionArgs, argTypes)) return failure(); fir::IterWhileOp::ensureTerminator(*body, builder, result.location); return mlir::success(); } static mlir::LogicalResult verify(fir::IterWhileOp op) { // Check that the body defines as single block argument for the induction // variable. auto *body = op.getBody(); if (!body->getArgument(1).getType().isInteger(1)) return op.emitOpError( "expected body second argument to be an index argument for " "the induction variable"); if (!body->getArgument(0).getType().isIndex()) return op.emitOpError( "expected body first argument to be an index argument for " "the induction variable"); auto opNumResults = op.getNumResults(); if (op.finalValue()) { // Result type must be "(index, i1, ...)". if (!op.getResult(0).getType().isa()) return op.emitOpError("result #0 expected to be index"); if (!op.getResult(1).getType().isSignlessInteger(1)) return op.emitOpError("result #1 expected to be i1"); opNumResults--; } else { // iterate_while always returns the early exit induction value. // Result type must be "(i1, ...)" if (!op.getResult(0).getType().isSignlessInteger(1)) return op.emitOpError("result #0 expected to be i1"); } if (opNumResults == 0) return mlir::failure(); if (op.getNumIterOperands() != opNumResults) return op.emitOpError( "mismatch in number of loop-carried values and defined values"); if (op.getNumRegionIterArgs() != opNumResults) return op.emitOpError( "mismatch in number of basic block args and defined values"); auto iterOperands = op.getIterOperands(); auto iterArgs = op.getRegionIterArgs(); auto opResults = op.finalValue() ? op.getResults().drop_front() : op.getResults(); unsigned i = 0; for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { if (std::get<0>(e).getType() != std::get<2>(e).getType()) return op.emitOpError() << "types mismatch between " << i << "th iter operand and defined value"; if (std::get<1>(e).getType() != std::get<2>(e).getType()) return op.emitOpError() << "types mismatch between " << i << "th iter region arg and defined value"; i++; } return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::IterWhileOp op) { p << " (" << op.getInductionVar() << " = " << op.lowerBound() << " to " << op.upperBound() << " step " << op.step() << ") and ("; assert(op.hasIterOperands()); auto regionArgs = op.getRegionIterArgs(); auto operands = op.getIterOperands(); p << regionArgs.front() << " = " << *operands.begin() << ")"; if (regionArgs.size() > 1) { p << " iter_args("; llvm::interleaveComma( llvm::zip(regionArgs.drop_front(), operands.drop_front()), p, [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); p << ") -> ("; llvm::interleaveComma( llvm::drop_begin(op.getResultTypes(), op.finalValue() ? 0 : 1), p); p << ")"; } else if (op.finalValue()) { p << " -> (" << op.getResultTypes() << ')'; } p.printOptionalAttrDictWithKeyword(op->getAttrs(), {IterWhileOp::getFinalValueAttrName()}); p.printRegion(op.region(), /*printEntryBlockArgs=*/false, /*printBlockTerminators=*/true); } mlir::Region &fir::IterWhileOp::getLoopBody() { return region(); } bool fir::IterWhileOp::isDefinedOutsideOfLoop(mlir::Value value) { return !region().isAncestor(value.getParentRegion()); } mlir::LogicalResult fir::IterWhileOp::moveOutOfLoop(llvm::ArrayRef ops) { for (auto *op : ops) op->moveBefore(*this); return success(); } mlir::BlockArgument fir::IterWhileOp::iterArgToBlockArg(mlir::Value iterArg) { for (auto i : llvm::enumerate(initArgs())) if (iterArg == i.value()) return region().front().getArgument(i.index() + 1); return {}; } void fir::IterWhileOp::resultToSourceOps( llvm::SmallVectorImpl &results, unsigned resultNum) { auto oper = finalValue() ? resultNum + 1 : resultNum; auto *term = region().front().getTerminator(); if (oper < term->getNumOperands()) results.push_back(term->getOperand(oper)); } mlir::Value fir::IterWhileOp::blockArgToSourceOp(unsigned blockArgNum) { if (blockArgNum > 0 && blockArgNum <= initArgs().size()) return initArgs()[blockArgNum - 1]; return {}; } //===----------------------------------------------------------------------===// // LenParamIndexOp //===----------------------------------------------------------------------===// static mlir::ParseResult parseLenParamIndexOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { llvm::StringRef fieldName; auto &builder = parser.getBuilder(); mlir::Type recty; if (parser.parseOptionalKeyword(&fieldName) || parser.parseComma() || parser.parseType(recty)) return mlir::failure(); result.addAttribute(fir::LenParamIndexOp::fieldAttrName(), builder.getStringAttr(fieldName)); if (!recty.dyn_cast()) return mlir::failure(); result.addAttribute(fir::LenParamIndexOp::typeAttrName(), mlir::TypeAttr::get(recty)); mlir::Type lenType = fir::LenType::get(builder.getContext()); if (parser.addTypeToList(lenType, result.types)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::LenParamIndexOp &op) { p << ' ' << op.getOperation() ->getAttrOfType( fir::LenParamIndexOp::fieldAttrName()) .getValue() << ", " << op.getOperation()->getAttr(fir::LenParamIndexOp::typeAttrName()); } //===----------------------------------------------------------------------===// // LoadOp //===----------------------------------------------------------------------===// void fir::LoadOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Value refVal) { if (!refVal) { mlir::emitError(result.location, "LoadOp has null argument"); return; } auto eleTy = fir::dyn_cast_ptrEleTy(refVal.getType()); if (!eleTy) { mlir::emitError(result.location, "not a memory reference type"); return; } result.addOperands(refVal); result.addTypes(eleTy); } /// Get the element type of a reference like type; otherwise null static mlir::Type elementTypeOf(mlir::Type ref) { return llvm::TypeSwitch(ref) .Case( [](auto type) { return type.getEleTy(); }) .Default([](mlir::Type) { return mlir::Type{}; }); } mlir::ParseResult fir::LoadOp::getElementOf(mlir::Type &ele, mlir::Type ref) { if ((ele = elementTypeOf(ref))) return mlir::success(); return mlir::failure(); } static mlir::ParseResult parseLoadOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { mlir::Type type; mlir::OpAsmParser::OperandType oper; if (parser.parseOperand(oper) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(type) || parser.resolveOperand(oper, type, result.operands)) return mlir::failure(); mlir::Type eleTy; if (fir::LoadOp::getElementOf(eleTy, type) || parser.addTypeToList(eleTy, result.types)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::LoadOp &op) { p << ' '; p.printOperand(op.memref()); p.printOptionalAttrDict(op.getOperation()->getAttrs(), {}); p << " : " << op.memref().getType(); } //===----------------------------------------------------------------------===// // DoLoopOp //===----------------------------------------------------------------------===// void fir::DoLoopOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Value lb, mlir::Value ub, mlir::Value step, bool unordered, bool finalCountValue, mlir::ValueRange iterArgs, llvm::ArrayRef attributes) { result.addOperands({lb, ub, step}); result.addOperands(iterArgs); if (finalCountValue) { result.addTypes(builder.getIndexType()); result.addAttribute(finalValueAttrName(result.name), builder.getUnitAttr()); } for (auto v : iterArgs) result.addTypes(v.getType()); mlir::Region *bodyRegion = result.addRegion(); bodyRegion->push_back(new Block{}); if (iterArgs.empty() && !finalCountValue) DoLoopOp::ensureTerminator(*bodyRegion, builder, result.location); bodyRegion->front().addArgument(builder.getIndexType()); bodyRegion->front().addArguments(iterArgs.getTypes()); if (unordered) result.addAttribute(unorderedAttrName(result.name), builder.getUnitAttr()); result.addAttributes(attributes); } static mlir::ParseResult parseDoLoopOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { auto &builder = parser.getBuilder(); mlir::OpAsmParser::OperandType inductionVariable, lb, ub, step; // Parse the induction variable followed by '='. if (parser.parseRegionArgument(inductionVariable) || parser.parseEqual()) return mlir::failure(); // Parse loop bounds. auto indexType = builder.getIndexType(); if (parser.parseOperand(lb) || parser.resolveOperand(lb, indexType, result.operands) || parser.parseKeyword("to") || parser.parseOperand(ub) || parser.resolveOperand(ub, indexType, result.operands) || parser.parseKeyword("step") || parser.parseOperand(step) || parser.resolveOperand(step, indexType, result.operands)) return failure(); if (mlir::succeeded(parser.parseOptionalKeyword("unordered"))) result.addAttribute("unordered", builder.getUnitAttr()); // Parse the optional initial iteration arguments. llvm::SmallVector regionArgs, operands; llvm::SmallVector argTypes; auto prependCount = false; regionArgs.push_back(inductionVariable); if (succeeded(parser.parseOptionalKeyword("iter_args"))) { // Parse assignment list and results type list. if (parser.parseAssignmentList(regionArgs, operands) || parser.parseArrowTypeList(result.types)) return failure(); if (result.types.size() == operands.size() + 1) prependCount = true; // Resolve input operands. llvm::ArrayRef resTypes = result.types; for (auto operand_type : llvm::zip(operands, prependCount ? resTypes.drop_front() : resTypes)) if (parser.resolveOperand(std::get<0>(operand_type), std::get<1>(operand_type), result.operands)) return failure(); } else if (succeeded(parser.parseOptionalArrow())) { if (parser.parseKeyword("index")) return failure(); result.types.push_back(indexType); prependCount = true; } if (parser.parseOptionalAttrDictWithKeyword(result.attributes)) return mlir::failure(); // Induction variable. if (prependCount) result.addAttribute(DoLoopOp::finalValueAttrName(result.name), builder.getUnitAttr()); else argTypes.push_back(indexType); // Loop carried variables argTypes.append(result.types.begin(), result.types.end()); // Parse the body region. auto *body = result.addRegion(); if (regionArgs.size() != argTypes.size()) return parser.emitError( parser.getNameLoc(), "mismatch in number of loop-carried values and defined values"); if (parser.parseRegion(*body, regionArgs, argTypes)) return failure(); DoLoopOp::ensureTerminator(*body, builder, result.location); return mlir::success(); } fir::DoLoopOp fir::getForInductionVarOwner(mlir::Value val) { auto ivArg = val.dyn_cast(); if (!ivArg) return {}; assert(ivArg.getOwner() && "unlinked block argument"); auto *containingInst = ivArg.getOwner()->getParentOp(); return dyn_cast_or_null(containingInst); } // Lifted from loop.loop static mlir::LogicalResult verify(fir::DoLoopOp op) { // Check that the body defines as single block argument for the induction // variable. auto *body = op.getBody(); if (!body->getArgument(0).getType().isIndex()) return op.emitOpError( "expected body first argument to be an index argument for " "the induction variable"); auto opNumResults = op.getNumResults(); if (opNumResults == 0) return success(); if (op.finalValue()) { if (op.unordered()) return op.emitOpError("unordered loop has no final value"); opNumResults--; } if (op.getNumIterOperands() != opNumResults) return op.emitOpError( "mismatch in number of loop-carried values and defined values"); if (op.getNumRegionIterArgs() != opNumResults) return op.emitOpError( "mismatch in number of basic block args and defined values"); auto iterOperands = op.getIterOperands(); auto iterArgs = op.getRegionIterArgs(); auto opResults = op.finalValue() ? op.getResults().drop_front() : op.getResults(); unsigned i = 0; for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) { if (std::get<0>(e).getType() != std::get<2>(e).getType()) return op.emitOpError() << "types mismatch between " << i << "th iter operand and defined value"; if (std::get<1>(e).getType() != std::get<2>(e).getType()) return op.emitOpError() << "types mismatch between " << i << "th iter region arg and defined value"; i++; } return success(); } static void print(mlir::OpAsmPrinter &p, fir::DoLoopOp op) { bool printBlockTerminators = false; p << ' ' << op.getInductionVar() << " = " << op.lowerBound() << " to " << op.upperBound() << " step " << op.step(); if (op.unordered()) p << " unordered"; if (op.hasIterOperands()) { p << " iter_args("; auto regionArgs = op.getRegionIterArgs(); auto operands = op.getIterOperands(); llvm::interleaveComma(llvm::zip(regionArgs, operands), p, [&](auto it) { p << std::get<0>(it) << " = " << std::get<1>(it); }); p << ") -> (" << op.getResultTypes() << ')'; printBlockTerminators = true; } else if (op.finalValue()) { p << " -> " << op.getResultTypes(); printBlockTerminators = true; } p.printOptionalAttrDictWithKeyword(op->getAttrs(), {"unordered", "finalValue"}); p.printRegion(op.region(), /*printEntryBlockArgs=*/false, printBlockTerminators); } mlir::Region &fir::DoLoopOp::getLoopBody() { return region(); } bool fir::DoLoopOp::isDefinedOutsideOfLoop(mlir::Value value) { return !region().isAncestor(value.getParentRegion()); } mlir::LogicalResult fir::DoLoopOp::moveOutOfLoop(llvm::ArrayRef ops) { for (auto op : ops) op->moveBefore(*this); return success(); } /// Translate a value passed as an iter_arg to the corresponding block /// argument in the body of the loop. mlir::BlockArgument fir::DoLoopOp::iterArgToBlockArg(mlir::Value iterArg) { for (auto i : llvm::enumerate(initArgs())) if (iterArg == i.value()) return region().front().getArgument(i.index() + 1); return {}; } /// Translate the result vector (by index number) to the corresponding value /// to the `fir.result` Op. void fir::DoLoopOp::resultToSourceOps( llvm::SmallVectorImpl &results, unsigned resultNum) { auto oper = finalValue() ? resultNum + 1 : resultNum; auto *term = region().front().getTerminator(); if (oper < term->getNumOperands()) results.push_back(term->getOperand(oper)); } /// Translate the block argument (by index number) to the corresponding value /// passed as an iter_arg to the parent DoLoopOp. mlir::Value fir::DoLoopOp::blockArgToSourceOp(unsigned blockArgNum) { if (blockArgNum > 0 && blockArgNum <= initArgs().size()) return initArgs()[blockArgNum - 1]; return {}; } //===----------------------------------------------------------------------===// // DTEntryOp //===----------------------------------------------------------------------===// static mlir::ParseResult parseDTEntryOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { llvm::StringRef methodName; // allow `methodName` or `"methodName"` if (failed(parser.parseOptionalKeyword(&methodName))) { mlir::StringAttr methodAttr; if (parser.parseAttribute(methodAttr, fir::DTEntryOp::getMethodAttrName(), result.attributes)) return mlir::failure(); } else { result.addAttribute(fir::DTEntryOp::getMethodAttrName(), parser.getBuilder().getStringAttr(methodName)); } mlir::SymbolRefAttr calleeAttr; if (parser.parseComma() || parser.parseAttribute(calleeAttr, fir::DTEntryOp::getProcAttrName(), result.attributes)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::DTEntryOp &op) { p << ' ' << op.getOperation()->getAttr(fir::DTEntryOp::getMethodAttrName()) << ", " << op.getOperation()->getAttr(fir::DTEntryOp::getProcAttrName()); } //===----------------------------------------------------------------------===// // ReboxOp //===----------------------------------------------------------------------===// /// Get the scalar type related to a fir.box type. /// Example: return f32 for !fir.box>. static mlir::Type getBoxScalarEleTy(mlir::Type boxTy) { auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); if (auto seqTy = eleTy.dyn_cast()) return seqTy.getEleTy(); return eleTy; } /// Get the rank from a !fir.box type static unsigned getBoxRank(mlir::Type boxTy) { auto eleTy = fir::dyn_cast_ptrOrBoxEleTy(boxTy); if (auto seqTy = eleTy.dyn_cast()) return seqTy.getDimension(); return 0; } static mlir::LogicalResult verify(fir::ReboxOp op) { auto inputBoxTy = op.box().getType(); if (fir::isa_unknown_size_box(inputBoxTy)) return op.emitOpError("box operand must not have unknown rank or type"); auto outBoxTy = op.getType(); if (fir::isa_unknown_size_box(outBoxTy)) return op.emitOpError("result type must not have unknown rank or type"); auto inputRank = getBoxRank(inputBoxTy); auto inputEleTy = getBoxScalarEleTy(inputBoxTy); auto outRank = getBoxRank(outBoxTy); auto outEleTy = getBoxScalarEleTy(outBoxTy); if (auto slice = op.slice()) { // Slicing case if (slice.getType().cast().getRank() != inputRank) return op.emitOpError("slice operand rank must match box operand rank"); if (auto shape = op.shape()) { if (auto shiftTy = shape.getType().dyn_cast()) { if (shiftTy.getRank() != inputRank) return op.emitOpError("shape operand and input box ranks must match " "when there is a slice"); } else { return op.emitOpError("shape operand must absent or be a fir.shift " "when there is a slice"); } } if (auto sliceOp = slice.getDefiningOp()) { auto slicedRank = mlir::cast(sliceOp).getOutRank(); if (slicedRank != outRank) return op.emitOpError("result type rank and rank after applying slice " "operand must match"); } } else { // Reshaping case unsigned shapeRank = inputRank; if (auto shape = op.shape()) { auto ty = shape.getType(); if (auto shapeTy = ty.dyn_cast()) { shapeRank = shapeTy.getRank(); } else if (auto shapeShiftTy = ty.dyn_cast()) { shapeRank = shapeShiftTy.getRank(); } else { auto shiftTy = ty.cast(); shapeRank = shiftTy.getRank(); if (shapeRank != inputRank) return op.emitOpError("shape operand and input box ranks must match " "when the shape is a fir.shift"); } } if (shapeRank != outRank) return op.emitOpError("result type and shape operand ranks must match"); } if (inputEleTy != outEleTy) // TODO: check that outBoxTy is a parent type of inputBoxTy for derived // types. if (!inputEleTy.isa()) return op.emitOpError( "op input and output element types must match for intrinsic types"); return mlir::success(); } //===----------------------------------------------------------------------===// // ResultOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::ResultOp op) { auto *parentOp = op->getParentOp(); auto results = parentOp->getResults(); auto operands = op->getOperands(); if (parentOp->getNumResults() != op.getNumOperands()) return op.emitOpError() << "parent of result must have same arity"; for (auto e : llvm::zip(results, operands)) if (std::get<0>(e).getType() != std::get<1>(e).getType()) return op.emitOpError() << "types mismatch between result op and its parent"; return success(); } //===----------------------------------------------------------------------===// // SaveResultOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::SaveResultOp op) { auto resultType = op.value().getType(); if (resultType != fir::dyn_cast_ptrEleTy(op.memref().getType())) return op.emitOpError("value type must match memory reference type"); if (fir::isa_unknown_size_box(resultType)) return op.emitOpError("cannot save !fir.box of unknown rank or type"); if (resultType.isa()) { if (op.shape() || !op.typeparams().empty()) return op.emitOpError( "must not have shape or length operands if the value is a fir.box"); return mlir::success(); } // fir.record or fir.array case. unsigned shapeTyRank = 0; if (auto shapeOp = op.shape()) { auto shapeTy = shapeOp.getType(); if (auto s = shapeTy.dyn_cast()) shapeTyRank = s.getRank(); else shapeTyRank = shapeTy.cast().getRank(); } auto eleTy = resultType; if (auto seqTy = resultType.dyn_cast()) { if (seqTy.getDimension() != shapeTyRank) op.emitOpError("shape operand must be provided and have the value rank " "when the value is a fir.array"); eleTy = seqTy.getEleTy(); } else { if (shapeTyRank != 0) op.emitOpError( "shape operand should only be provided if the value is a fir.array"); } if (auto recTy = eleTy.dyn_cast()) { if (recTy.getNumLenParams() != op.typeparams().size()) op.emitOpError("length parameters number must match with the value type " "length parameters"); } else if (auto charTy = eleTy.dyn_cast()) { if (op.typeparams().size() > 1) op.emitOpError("no more than one length parameter must be provided for " "character value"); } else { if (!op.typeparams().empty()) op.emitOpError( "length parameters must not be provided for this value type"); } return mlir::success(); } //===----------------------------------------------------------------------===// // SelectOp //===----------------------------------------------------------------------===// static constexpr llvm::StringRef getCompareOffsetAttr() { return "compare_operand_offsets"; } static constexpr llvm::StringRef getTargetOffsetAttr() { return "target_operand_offsets"; } template static A getSubOperands(unsigned pos, A allArgs, mlir::DenseIntElementsAttr ranges, AdditionalArgs &&...additionalArgs) { unsigned start = 0; for (unsigned i = 0; i < pos; ++i) start += (*(ranges.begin() + i)).getZExtValue(); return allArgs.slice(start, (*(ranges.begin() + pos)).getZExtValue(), std::forward(additionalArgs)...); } static mlir::MutableOperandRange getMutableSuccessorOperands(unsigned pos, mlir::MutableOperandRange operands, StringRef offsetAttr) { Operation *owner = operands.getOwner(); NamedAttribute targetOffsetAttr = *owner->getAttrDictionary().getNamed(offsetAttr); return getSubOperands( pos, operands, targetOffsetAttr.second.cast(), mlir::MutableOperandRange::OperandSegment(pos, targetOffsetAttr)); } static unsigned denseElementsSize(mlir::DenseIntElementsAttr attr) { return attr.getNumElements(); } llvm::Optional fir::SelectOp::getCompareOperands(unsigned) { return {}; } llvm::Optional> fir::SelectOp::getCompareOperands(llvm::ArrayRef, unsigned) { return {}; } llvm::Optional fir::SelectOp::getMutableSuccessorOperands(unsigned oper) { return ::getMutableSuccessorOperands(oper, targetArgsMutable(), getTargetOffsetAttr()); } llvm::Optional> fir::SelectOp::getSuccessorOperands(llvm::ArrayRef operands, unsigned oper) { auto a = (*this)->getAttrOfType(getTargetOffsetAttr()); auto segments = (*this)->getAttrOfType( getOperandSegmentSizeAttr()); return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; } unsigned fir::SelectOp::targetOffsetSize() { return denseElementsSize((*this)->getAttrOfType( getTargetOffsetAttr())); } //===----------------------------------------------------------------------===// // SelectCaseOp //===----------------------------------------------------------------------===// llvm::Optional fir::SelectCaseOp::getCompareOperands(unsigned cond) { auto a = (*this)->getAttrOfType( getCompareOffsetAttr()); return {getSubOperands(cond, compareArgs(), a)}; } llvm::Optional> fir::SelectCaseOp::getCompareOperands(llvm::ArrayRef operands, unsigned cond) { auto a = (*this)->getAttrOfType( getCompareOffsetAttr()); auto segments = (*this)->getAttrOfType( getOperandSegmentSizeAttr()); return {getSubOperands(cond, getSubOperands(1, operands, segments), a)}; } llvm::Optional fir::SelectCaseOp::getMutableSuccessorOperands(unsigned oper) { return ::getMutableSuccessorOperands(oper, targetArgsMutable(), getTargetOffsetAttr()); } llvm::Optional> fir::SelectCaseOp::getSuccessorOperands(llvm::ArrayRef operands, unsigned oper) { auto a = (*this)->getAttrOfType(getTargetOffsetAttr()); auto segments = (*this)->getAttrOfType( getOperandSegmentSizeAttr()); return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; } // parser for fir.select_case Op static mlir::ParseResult parseSelectCase(mlir::OpAsmParser &parser, mlir::OperationState &result) { mlir::OpAsmParser::OperandType selector; mlir::Type type; if (parseSelector(parser, result, selector, type)) return mlir::failure(); llvm::SmallVector attrs; llvm::SmallVector opers; llvm::SmallVector dests; llvm::SmallVector> destArgs; llvm::SmallVector argOffs; int32_t offSize = 0; while (true) { mlir::Attribute attr; mlir::Block *dest; llvm::SmallVector destArg; mlir::NamedAttrList temp; if (parser.parseAttribute(attr, "a", temp) || isValidCaseAttr(attr) || parser.parseComma()) return mlir::failure(); attrs.push_back(attr); if (attr.dyn_cast_or_null()) { argOffs.push_back(0); } else if (attr.dyn_cast_or_null()) { mlir::OpAsmParser::OperandType oper1; mlir::OpAsmParser::OperandType oper2; if (parser.parseOperand(oper1) || parser.parseComma() || parser.parseOperand(oper2) || parser.parseComma()) return mlir::failure(); opers.push_back(oper1); opers.push_back(oper2); argOffs.push_back(2); offSize += 2; } else { mlir::OpAsmParser::OperandType oper; if (parser.parseOperand(oper) || parser.parseComma()) return mlir::failure(); opers.push_back(oper); argOffs.push_back(1); ++offSize; } if (parser.parseSuccessorAndUseList(dest, destArg)) return mlir::failure(); dests.push_back(dest); destArgs.push_back(destArg); if (mlir::succeeded(parser.parseOptionalRSquare())) break; if (parser.parseComma()) return mlir::failure(); } result.addAttribute(fir::SelectCaseOp::getCasesAttr(), parser.getBuilder().getArrayAttr(attrs)); if (parser.resolveOperands(opers, type, result.operands)) return mlir::failure(); llvm::SmallVector targOffs; int32_t toffSize = 0; const auto count = dests.size(); for (std::remove_const_t i = 0; i != count; ++i) { result.addSuccessors(dests[i]); result.addOperands(destArgs[i]); auto argSize = destArgs[i].size(); targOffs.push_back(argSize); toffSize += argSize; } auto &bld = parser.getBuilder(); result.addAttribute(fir::SelectCaseOp::getOperandSegmentSizeAttr(), bld.getI32VectorAttr({1, offSize, toffSize})); result.addAttribute(getCompareOffsetAttr(), bld.getI32VectorAttr(argOffs)); result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(targOffs)); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::SelectCaseOp &op) { p << ' '; p.printOperand(op.getSelector()); p << " : " << op.getSelector().getType() << " ["; auto cases = op.getOperation() ->getAttrOfType(op.getCasesAttr()) .getValue(); auto count = op.getNumConditions(); for (decltype(count) i = 0; i != count; ++i) { if (i) p << ", "; p << cases[i] << ", "; if (!cases[i].isa()) { auto caseArgs = *op.getCompareOperands(i); p.printOperand(*caseArgs.begin()); p << ", "; if (cases[i].isa()) { p.printOperand(*(++caseArgs.begin())); p << ", "; } } op.printSuccessorAtIndex(p, i); } p << ']'; p.printOptionalAttrDict(op.getOperation()->getAttrs(), {op.getCasesAttr(), getCompareOffsetAttr(), getTargetOffsetAttr(), op.getOperandSegmentSizeAttr()}); } unsigned fir::SelectCaseOp::compareOffsetSize() { return denseElementsSize((*this)->getAttrOfType( getCompareOffsetAttr())); } unsigned fir::SelectCaseOp::targetOffsetSize() { return denseElementsSize((*this)->getAttrOfType( getTargetOffsetAttr())); } void fir::SelectCaseOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Value selector, llvm::ArrayRef compareAttrs, llvm::ArrayRef cmpOperands, llvm::ArrayRef destinations, llvm::ArrayRef destOperands, llvm::ArrayRef attributes) { result.addOperands(selector); result.addAttribute(getCasesAttr(), builder.getArrayAttr(compareAttrs)); llvm::SmallVector operOffs; int32_t operSize = 0; for (auto attr : compareAttrs) { if (attr.isa()) { operOffs.push_back(2); operSize += 2; } else if (attr.isa()) { operOffs.push_back(0); } else { operOffs.push_back(1); ++operSize; } } for (auto ops : cmpOperands) result.addOperands(ops); result.addAttribute(getCompareOffsetAttr(), builder.getI32VectorAttr(operOffs)); const auto count = destinations.size(); for (auto d : destinations) result.addSuccessors(d); const auto opCount = destOperands.size(); llvm::SmallVector argOffs; int32_t sumArgs = 0; for (std::remove_const_t i = 0; i != count; ++i) { if (i < opCount) { result.addOperands(destOperands[i]); const auto argSz = destOperands[i].size(); argOffs.push_back(argSz); sumArgs += argSz; } else { argOffs.push_back(0); } } result.addAttribute(getOperandSegmentSizeAttr(), builder.getI32VectorAttr({1, operSize, sumArgs})); result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); result.addAttributes(attributes); } /// This builder has a slightly simplified interface in that the list of /// operands need not be partitioned by the builder. Instead the operands are /// partitioned here, before being passed to the default builder. This /// partitioning is unchecked, so can go awry on bad input. void fir::SelectCaseOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Value selector, llvm::ArrayRef compareAttrs, llvm::ArrayRef cmpOpList, llvm::ArrayRef destinations, llvm::ArrayRef destOperands, llvm::ArrayRef attributes) { llvm::SmallVector cmpOpers; auto iter = cmpOpList.begin(); for (auto &attr : compareAttrs) { if (attr.isa()) { cmpOpers.push_back(mlir::ValueRange({iter, iter + 2})); iter += 2; } else if (attr.isa()) { cmpOpers.push_back(mlir::ValueRange{}); } else { cmpOpers.push_back(mlir::ValueRange({iter, iter + 1})); ++iter; } } build(builder, result, selector, compareAttrs, cmpOpers, destinations, destOperands, attributes); } static mlir::LogicalResult verify(fir::SelectCaseOp &op) { if (!(op.getSelector().getType().isa() || op.getSelector().getType().isa() || op.getSelector().getType().isa() || op.getSelector().getType().isa() || op.getSelector().getType().isa())) return op.emitOpError("must be an integer, character, or logical"); auto cases = op.getOperation() ->getAttrOfType(op.getCasesAttr()) .getValue(); auto count = op.getNumDest(); if (count == 0) return op.emitOpError("must have at least one successor"); if (op.getNumConditions() != count) return op.emitOpError("number of conditions and successors don't match"); if (op.compareOffsetSize() != count) return op.emitOpError("incorrect number of compare operand groups"); if (op.targetOffsetSize() != count) return op.emitOpError("incorrect number of successor operand groups"); for (decltype(count) i = 0; i != count; ++i) { auto &attr = cases[i]; if (!(attr.isa() || attr.isa() || attr.isa() || attr.isa() || attr.isa())) return op.emitOpError("incorrect select case attribute type"); } return mlir::success(); } //===----------------------------------------------------------------------===// // SelectRankOp //===----------------------------------------------------------------------===// llvm::Optional fir::SelectRankOp::getCompareOperands(unsigned) { return {}; } llvm::Optional> fir::SelectRankOp::getCompareOperands(llvm::ArrayRef, unsigned) { return {}; } llvm::Optional fir::SelectRankOp::getMutableSuccessorOperands(unsigned oper) { return ::getMutableSuccessorOperands(oper, targetArgsMutable(), getTargetOffsetAttr()); } llvm::Optional> fir::SelectRankOp::getSuccessorOperands(llvm::ArrayRef operands, unsigned oper) { auto a = (*this)->getAttrOfType(getTargetOffsetAttr()); auto segments = (*this)->getAttrOfType( getOperandSegmentSizeAttr()); return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; } unsigned fir::SelectRankOp::targetOffsetSize() { return denseElementsSize((*this)->getAttrOfType( getTargetOffsetAttr())); } //===----------------------------------------------------------------------===// // SelectTypeOp //===----------------------------------------------------------------------===// llvm::Optional fir::SelectTypeOp::getCompareOperands(unsigned) { return {}; } llvm::Optional> fir::SelectTypeOp::getCompareOperands(llvm::ArrayRef, unsigned) { return {}; } llvm::Optional fir::SelectTypeOp::getMutableSuccessorOperands(unsigned oper) { return ::getMutableSuccessorOperands(oper, targetArgsMutable(), getTargetOffsetAttr()); } llvm::Optional> fir::SelectTypeOp::getSuccessorOperands(llvm::ArrayRef operands, unsigned oper) { auto a = (*this)->getAttrOfType(getTargetOffsetAttr()); auto segments = (*this)->getAttrOfType( getOperandSegmentSizeAttr()); return {getSubOperands(oper, getSubOperands(2, operands, segments), a)}; } static ParseResult parseSelectType(OpAsmParser &parser, OperationState &result) { mlir::OpAsmParser::OperandType selector; mlir::Type type; if (parseSelector(parser, result, selector, type)) return mlir::failure(); llvm::SmallVector attrs; llvm::SmallVector dests; llvm::SmallVector> destArgs; while (true) { mlir::Attribute attr; mlir::Block *dest; llvm::SmallVector destArg; mlir::NamedAttrList temp; if (parser.parseAttribute(attr, "a", temp) || parser.parseComma() || parser.parseSuccessorAndUseList(dest, destArg)) return mlir::failure(); attrs.push_back(attr); dests.push_back(dest); destArgs.push_back(destArg); if (mlir::succeeded(parser.parseOptionalRSquare())) break; if (parser.parseComma()) return mlir::failure(); } auto &bld = parser.getBuilder(); result.addAttribute(fir::SelectTypeOp::getCasesAttr(), bld.getArrayAttr(attrs)); llvm::SmallVector argOffs; int32_t offSize = 0; const auto count = dests.size(); for (std::remove_const_t i = 0; i != count; ++i) { result.addSuccessors(dests[i]); result.addOperands(destArgs[i]); auto argSize = destArgs[i].size(); argOffs.push_back(argSize); offSize += argSize; } result.addAttribute(fir::SelectTypeOp::getOperandSegmentSizeAttr(), bld.getI32VectorAttr({1, 0, offSize})); result.addAttribute(getTargetOffsetAttr(), bld.getI32VectorAttr(argOffs)); return mlir::success(); } unsigned fir::SelectTypeOp::targetOffsetSize() { return denseElementsSize((*this)->getAttrOfType( getTargetOffsetAttr())); } static void print(mlir::OpAsmPrinter &p, fir::SelectTypeOp &op) { p << ' '; p.printOperand(op.getSelector()); p << " : " << op.getSelector().getType() << " ["; auto cases = op.getOperation() ->getAttrOfType(op.getCasesAttr()) .getValue(); auto count = op.getNumConditions(); for (decltype(count) i = 0; i != count; ++i) { if (i) p << ", "; p << cases[i] << ", "; op.printSuccessorAtIndex(p, i); } p << ']'; p.printOptionalAttrDict(op.getOperation()->getAttrs(), {op.getCasesAttr(), getCompareOffsetAttr(), getTargetOffsetAttr(), fir::SelectTypeOp::getOperandSegmentSizeAttr()}); } static mlir::LogicalResult verify(fir::SelectTypeOp &op) { if (!(op.getSelector().getType().isa())) return op.emitOpError("must be a boxed type"); auto cases = op.getOperation() ->getAttrOfType(op.getCasesAttr()) .getValue(); auto count = op.getNumDest(); if (count == 0) return op.emitOpError("must have at least one successor"); if (op.getNumConditions() != count) return op.emitOpError("number of conditions and successors don't match"); if (op.targetOffsetSize() != count) return op.emitOpError("incorrect number of successor operand groups"); for (decltype(count) i = 0; i != count; ++i) { auto &attr = cases[i]; if (!(attr.isa() || attr.isa() || attr.isa())) return op.emitOpError("invalid type-case alternative"); } return mlir::success(); } void fir::SelectTypeOp::build(mlir::OpBuilder &builder, mlir::OperationState &result, mlir::Value selector, llvm::ArrayRef typeOperands, llvm::ArrayRef destinations, llvm::ArrayRef destOperands, llvm::ArrayRef attributes) { result.addOperands(selector); result.addAttribute(getCasesAttr(), builder.getArrayAttr(typeOperands)); const auto count = destinations.size(); for (mlir::Block *dest : destinations) result.addSuccessors(dest); const auto opCount = destOperands.size(); llvm::SmallVector argOffs; int32_t sumArgs = 0; for (std::remove_const_t i = 0; i != count; ++i) { if (i < opCount) { result.addOperands(destOperands[i]); const auto argSz = destOperands[i].size(); argOffs.push_back(argSz); sumArgs += argSz; } else { argOffs.push_back(0); } } result.addAttribute(getOperandSegmentSizeAttr(), builder.getI32VectorAttr({1, 0, sumArgs})); result.addAttribute(getTargetOffsetAttr(), builder.getI32VectorAttr(argOffs)); result.addAttributes(attributes); } //===----------------------------------------------------------------------===// // ShapeOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::ShapeOp &op) { auto size = op.extents().size(); auto shapeTy = op.getType().dyn_cast(); assert(shapeTy && "must be a shape type"); if (shapeTy.getRank() != size) return op.emitOpError("shape type rank mismatch"); return mlir::success(); } //===----------------------------------------------------------------------===// // ShapeShiftOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::ShapeShiftOp &op) { auto size = op.pairs().size(); if (size < 2 || size > 16 * 2) return op.emitOpError("incorrect number of args"); if (size % 2 != 0) return op.emitOpError("requires a multiple of 2 args"); auto shapeTy = op.getType().dyn_cast(); assert(shapeTy && "must be a shape shift type"); if (shapeTy.getRank() * 2 != size) return op.emitOpError("shape type rank mismatch"); return mlir::success(); } //===----------------------------------------------------------------------===// // ShiftOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::ShiftOp &op) { auto size = op.origins().size(); auto shiftTy = op.getType().dyn_cast(); assert(shiftTy && "must be a shift type"); if (shiftTy.getRank() != size) return op.emitOpError("shift type rank mismatch"); return mlir::success(); } //===----------------------------------------------------------------------===// // SliceOp //===----------------------------------------------------------------------===// /// Return the output rank of a slice op. The output rank must be between 1 and /// the rank of the array being sliced (inclusive). unsigned fir::SliceOp::getOutputRank(mlir::ValueRange triples) { unsigned rank = 0; if (!triples.empty()) { for (unsigned i = 1, end = triples.size(); i < end; i += 3) { auto op = triples[i].getDefiningOp(); if (!mlir::isa_and_nonnull(op)) ++rank; } assert(rank > 0); } return rank; } static mlir::LogicalResult verify(fir::SliceOp &op) { auto size = op.triples().size(); if (size < 3 || size > 16 * 3) return op.emitOpError("incorrect number of args for triple"); if (size % 3 != 0) return op.emitOpError("requires a multiple of 3 args"); auto sliceTy = op.getType().dyn_cast(); assert(sliceTy && "must be a slice type"); if (sliceTy.getRank() * 3 != size) return op.emitOpError("slice type rank mismatch"); return mlir::success(); } //===----------------------------------------------------------------------===// // StoreOp //===----------------------------------------------------------------------===// mlir::Type fir::StoreOp::elementType(mlir::Type refType) { return fir::dyn_cast_ptrEleTy(refType); } static mlir::ParseResult parseStoreOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { mlir::Type type; mlir::OpAsmParser::OperandType oper; mlir::OpAsmParser::OperandType store; if (parser.parseOperand(oper) || parser.parseKeyword("to") || parser.parseOperand(store) || parser.parseOptionalAttrDict(result.attributes) || parser.parseColonType(type) || parser.resolveOperand(oper, fir::StoreOp::elementType(type), result.operands) || parser.resolveOperand(store, type, result.operands)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::StoreOp &op) { p << ' '; p.printOperand(op.value()); p << " to "; p.printOperand(op.memref()); p.printOptionalAttrDict(op.getOperation()->getAttrs(), {}); p << " : " << op.memref().getType(); } static mlir::LogicalResult verify(fir::StoreOp &op) { if (op.value().getType() != fir::dyn_cast_ptrEleTy(op.memref().getType())) return op.emitOpError("store value type must match memory reference type"); if (fir::isa_unknown_size_box(op.value().getType())) return op.emitOpError("cannot store !fir.box of unknown rank or type"); return mlir::success(); } //===----------------------------------------------------------------------===// // StringLitOp //===----------------------------------------------------------------------===// bool fir::StringLitOp::isWideValue() { auto eleTy = getType().cast().getEleTy(); return eleTy.cast().getFKind() != 1; } static mlir::NamedAttribute mkNamedIntegerAttr(mlir::OpBuilder &builder, llvm::StringRef name, int64_t v) { assert(v > 0); return builder.getNamedAttr( name, builder.getIntegerAttr(builder.getIntegerType(64), v)); } void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, fir::CharacterType inType, llvm::StringRef val, llvm::Optional len) { auto valAttr = builder.getNamedAttr(value(), builder.getStringAttr(val)); int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); auto lenAttr = mkNamedIntegerAttr(builder, size(), length); result.addAttributes({valAttr, lenAttr}); result.addTypes(inType); } template static mlir::ArrayAttr convertToArrayAttr(mlir::OpBuilder &builder, llvm::ArrayRef xlist) { llvm::SmallVector attrs; auto ty = builder.getIntegerType(8 * sizeof(C)); for (auto ch : xlist) attrs.push_back(builder.getIntegerAttr(ty, ch)); return builder.getArrayAttr(attrs); } void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, fir::CharacterType inType, llvm::ArrayRef vlist, llvm::Optional len) { auto valAttr = builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); auto lenAttr = mkNamedIntegerAttr(builder, size(), length); result.addAttributes({valAttr, lenAttr}); result.addTypes(inType); } void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, fir::CharacterType inType, llvm::ArrayRef vlist, llvm::Optional len) { auto valAttr = builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); auto lenAttr = mkNamedIntegerAttr(builder, size(), length); result.addAttributes({valAttr, lenAttr}); result.addTypes(inType); } void fir::StringLitOp::build(mlir::OpBuilder &builder, OperationState &result, fir::CharacterType inType, llvm::ArrayRef vlist, llvm::Optional len) { auto valAttr = builder.getNamedAttr(xlist(), convertToArrayAttr(builder, vlist)); std::int64_t length = len.hasValue() ? len.getValue() : inType.getLen(); auto lenAttr = mkNamedIntegerAttr(builder, size(), length); result.addAttributes({valAttr, lenAttr}); result.addTypes(inType); } static mlir::ParseResult parseStringLitOp(mlir::OpAsmParser &parser, mlir::OperationState &result) { auto &builder = parser.getBuilder(); mlir::Attribute val; mlir::NamedAttrList attrs; llvm::SMLoc trailingTypeLoc; if (parser.parseAttribute(val, "fake", attrs)) return mlir::failure(); if (auto v = val.dyn_cast()) result.attributes.push_back( builder.getNamedAttr(fir::StringLitOp::value(), v)); else if (auto v = val.dyn_cast()) result.attributes.push_back( builder.getNamedAttr(fir::StringLitOp::xlist(), v)); else return parser.emitError(parser.getCurrentLocation(), "found an invalid constant"); mlir::IntegerAttr sz; mlir::Type type; if (parser.parseLParen() || parser.parseAttribute(sz, fir::StringLitOp::size(), result.attributes) || parser.parseRParen() || parser.getCurrentLocation(&trailingTypeLoc) || parser.parseColonType(type)) return mlir::failure(); auto charTy = type.dyn_cast(); if (!charTy) return parser.emitError(trailingTypeLoc, "must have character type"); type = fir::CharacterType::get(builder.getContext(), charTy.getFKind(), sz.getInt()); if (!type || parser.addTypesToList(type, result.types)) return mlir::failure(); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::StringLitOp &op) { p << ' ' << op.getValue() << '('; p << op.getSize().cast().getValue() << ") : "; p.printType(op.getType()); } static mlir::LogicalResult verify(fir::StringLitOp &op) { if (op.getSize().cast().getValue().isNegative()) return op.emitOpError("size must be non-negative"); if (auto xl = op.getOperation()->getAttr(fir::StringLitOp::xlist())) { auto xList = xl.cast(); for (auto a : xList) if (!a.isa()) return op.emitOpError("values in list must be integers"); } return mlir::success(); } //===----------------------------------------------------------------------===// // UnboxProcOp //===----------------------------------------------------------------------===// static mlir::LogicalResult verify(fir::UnboxProcOp &op) { if (auto eleTy = fir::dyn_cast_ptrEleTy(op.refTuple().getType())) if (eleTy.isa()) return mlir::success(); return op.emitOpError("second output argument has bad type"); } //===----------------------------------------------------------------------===// // IfOp //===----------------------------------------------------------------------===// void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, mlir::Value cond, bool withElseRegion) { build(builder, result, llvm::None, cond, withElseRegion); } void fir::IfOp::build(mlir::OpBuilder &builder, OperationState &result, mlir::TypeRange resultTypes, mlir::Value cond, bool withElseRegion) { result.addOperands(cond); result.addTypes(resultTypes); mlir::Region *thenRegion = result.addRegion(); thenRegion->push_back(new mlir::Block()); if (resultTypes.empty()) IfOp::ensureTerminator(*thenRegion, builder, result.location); mlir::Region *elseRegion = result.addRegion(); if (withElseRegion) { elseRegion->push_back(new mlir::Block()); if (resultTypes.empty()) IfOp::ensureTerminator(*elseRegion, builder, result.location); } } static mlir::ParseResult parseIfOp(OpAsmParser &parser, OperationState &result) { result.regions.reserve(2); mlir::Region *thenRegion = result.addRegion(); mlir::Region *elseRegion = result.addRegion(); auto &builder = parser.getBuilder(); OpAsmParser::OperandType cond; mlir::Type i1Type = builder.getIntegerType(1); if (parser.parseOperand(cond) || parser.resolveOperand(cond, i1Type, result.operands)) return mlir::failure(); if (parser.parseOptionalArrowTypeList(result.types)) return mlir::failure(); if (parser.parseRegion(*thenRegion, {}, {})) return mlir::failure(); IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location); if (mlir::succeeded(parser.parseOptionalKeyword("else"))) { if (parser.parseRegion(*elseRegion, {}, {})) return mlir::failure(); IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location); } // Parse the optional attribute list. if (parser.parseOptionalAttrDict(result.attributes)) return mlir::failure(); return mlir::success(); } static LogicalResult verify(fir::IfOp op) { if (op.getNumResults() != 0 && op.elseRegion().empty()) return op.emitOpError("must have an else block if defining values"); return mlir::success(); } static void print(mlir::OpAsmPrinter &p, fir::IfOp op) { bool printBlockTerminators = false; p << ' ' << op.condition(); if (!op.results().empty()) { p << " -> (" << op.getResultTypes() << ')'; printBlockTerminators = true; } p.printRegion(op.thenRegion(), /*printEntryBlockArgs=*/false, printBlockTerminators); // Print the 'else' regions if it exists and has a block. auto &otherReg = op.elseRegion(); if (!otherReg.empty()) { p << " else"; p.printRegion(otherReg, /*printEntryBlockArgs=*/false, printBlockTerminators); } p.printOptionalAttrDict(op->getAttrs()); } void fir::IfOp::resultToSourceOps(llvm::SmallVectorImpl &results, unsigned resultNum) { auto *term = thenRegion().front().getTerminator(); if (resultNum < term->getNumOperands()) results.push_back(term->getOperand(resultNum)); term = elseRegion().front().getTerminator(); if (resultNum < term->getNumOperands()) results.push_back(term->getOperand(resultNum)); } //===----------------------------------------------------------------------===// mlir::ParseResult fir::isValidCaseAttr(mlir::Attribute attr) { if (attr.dyn_cast_or_null() || attr.dyn_cast_or_null() || attr.dyn_cast_or_null() || attr.dyn_cast_or_null() || attr.dyn_cast_or_null()) return mlir::success(); return mlir::failure(); } unsigned fir::getCaseArgumentOffset(llvm::ArrayRef cases, unsigned dest) { unsigned o = 0; for (unsigned i = 0; i < dest; ++i) { auto &attr = cases[i]; if (!attr.dyn_cast_or_null()) { ++o; if (attr.dyn_cast_or_null()) ++o; } } return o; } mlir::ParseResult fir::parseSelector(mlir::OpAsmParser &parser, mlir::OperationState &result, mlir::OpAsmParser::OperandType &selector, mlir::Type &type) { if (parser.parseOperand(selector) || parser.parseColonType(type) || parser.resolveOperand(selector, type, result.operands) || parser.parseLSquare()) return mlir::failure(); return mlir::success(); } /// Generic pretty-printer of a binary operation static void printBinaryOp(Operation *op, OpAsmPrinter &p) { assert(op->getNumOperands() == 2 && "binary op must have two operands"); assert(op->getNumResults() == 1 && "binary op must have one result"); p << ' ' << op->getOperand(0) << ", " << op->getOperand(1); p.printOptionalAttrDict(op->getAttrs()); p << " : " << op->getResult(0).getType(); } /// Generic pretty-printer of an unary operation static void printUnaryOp(Operation *op, OpAsmPrinter &p) { assert(op->getNumOperands() == 1 && "unary op must have one operand"); assert(op->getNumResults() == 1 && "unary op must have one result"); p << ' ' << op->getOperand(0); p.printOptionalAttrDict(op->getAttrs()); p << " : " << op->getResult(0).getType(); } bool fir::isReferenceLike(mlir::Type type) { return type.isa() || type.isa() || type.isa(); } mlir::FuncOp fir::createFuncOp(mlir::Location loc, mlir::ModuleOp module, StringRef name, mlir::FunctionType type, llvm::ArrayRef attrs) { if (auto f = module.lookupSymbol(name)) return f; mlir::OpBuilder modBuilder(module.getBodyRegion()); modBuilder.setInsertionPoint(module.getBody()->getTerminator()); auto result = modBuilder.create(loc, name, type, attrs); result.setVisibility(mlir::SymbolTable::Visibility::Private); return result; } fir::GlobalOp fir::createGlobalOp(mlir::Location loc, mlir::ModuleOp module, StringRef name, mlir::Type type, llvm::ArrayRef attrs) { if (auto g = module.lookupSymbol(name)) return g; mlir::OpBuilder modBuilder(module.getBodyRegion()); auto result = modBuilder.create(loc, name, type, attrs); result.setVisibility(mlir::SymbolTable::Visibility::Private); return result; } bool fir::valueHasFirAttribute(mlir::Value value, llvm::StringRef attributeName) { // If this is a fir.box that was loaded, the fir attributes will be on the // related fir.ref creation. if (value.getType().isa()) if (auto definingOp = value.getDefiningOp()) if (auto loadOp = mlir::dyn_cast(definingOp)) value = loadOp.memref(); // If this is a function argument, look in the argument attributes. if (auto blockArg = value.dyn_cast()) { if (blockArg.getOwner() && blockArg.getOwner()->isEntryBlock()) if (auto funcOp = mlir::dyn_cast(blockArg.getOwner()->getParentOp())) if (funcOp.getArgAttr(blockArg.getArgNumber(), attributeName)) return true; return false; } if (auto definingOp = value.getDefiningOp()) { // If this is an allocated value, look at the allocation attributes. if (mlir::isa(definingOp) || mlir::isa(definingOp)) return definingOp->hasAttr(attributeName); // If this is an imported global, look at AddrOfOp and GlobalOp attributes. // Both operations are looked at because use/host associated variable (the // AddrOfOp) can have ASYNCHRONOUS/VOLATILE attributes even if the ultimate // entity (the globalOp) does not have them. if (auto addressOfOp = mlir::dyn_cast(definingOp)) { if (addressOfOp->hasAttr(attributeName)) return true; if (auto module = definingOp->getParentOfType()) if (auto globalOp = module.lookupSymbol(addressOfOp.symbol())) return globalOp->hasAttr(attributeName); } } // TODO: Construct associated entities attributes. Decide where the fir // attributes must be placed/looked for in this case. return false; } mlir::Type fir::applyPathToType(mlir::Type eleTy, mlir::ValueRange path) { for (auto i = path.begin(), end = path.end(); eleTy && i < end;) { eleTy = llvm::TypeSwitch(eleTy) .Case([&](fir::RecordType ty) { if (auto *op = (*i++).getDefiningOp()) { if (auto off = mlir::dyn_cast(op)) return ty.getType(off.getFieldName()); if (auto off = mlir::dyn_cast(op)) return ty.getType(fir::toInt(off)); } return mlir::Type{}; }) .Case([&](fir::SequenceType ty) { bool valid = true; const auto rank = ty.getDimension(); for (std::remove_const_t ii = 0; valid && ii < rank; ++ii) valid = i < end && fir::isa_integer((*i++).getType()); return valid ? ty.getEleTy() : mlir::Type{}; }) .Case([&](mlir::TupleType ty) { if (auto *op = (*i++).getDefiningOp()) if (auto off = mlir::dyn_cast(op)) return ty.getType(fir::toInt(off)); return mlir::Type{}; }) .Case([&](fir::ComplexType ty) { if (fir::isa_integer((*i++).getType())) return ty.getElementType(); return mlir::Type{}; }) .Case([&](mlir::ComplexType ty) { if (fir::isa_integer((*i++).getType())) return ty.getElementType(); return mlir::Type{}; }) .Default([&](const auto &) { return mlir::Type{}; }); } return eleTy; } // Tablegen operators #define GET_OP_CLASSES #include "flang/Optimizer/Dialect/FIROps.cpp.inc"