//===- MergeConsecutiveInsertExtractSlicePatterns.cpp ---------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "mlir/Dialect/Affine/ViewLikeInterfaceUtils.h" #include "mlir/Dialect/Tensor/IR/Tensor.h" #include "mlir/Dialect/Tensor/Transforms/Transforms.h" #include "mlir/Dialect/Tensor/Utils/Utils.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/OpDefinition.h" #include "mlir/IR/PatternMatch.h" using namespace mlir; using namespace mlir::tensor; namespace { /// Merges consecutive tensor.extract_slice ops into one. // TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps. struct MergeConsecutiveExtractSlice : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractSliceOp nextOp, PatternRewriter &rewriter) const override { auto prevOp = nextOp.getSource().getDefiningOp(); if (!prevOp) return failure(); SmallVector newOffsets, newSizes, newStrides; if (failed(affine::mergeOffsetsSizesAndStrides( rewriter, nextOp.getLoc(), prevOp, nextOp, prevOp.getDroppedDims(), newOffsets, newSizes, newStrides))) return failure(); rewriter.replaceOpWithNewOp(nextOp, nextOp.getType(), prevOp.getSource(), newOffsets, newSizes, newStrides); return success(); } }; /// Merges consecutive tensor.insert_slice ops into one. // TODO: move to FoldTensorSubsetOps and unify APIs with FoldMemRefAliasOps. template struct MergeConsecutiveInsertSlice : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(OpTy nextOp, PatternRewriter &rewriter) const override { auto prevOp = nextOp.getSource().template getDefiningOp(); if (!prevOp) return failure(); if (!prevOp.hasUnitStride() || !nextOp.hasUnitStride()) return failure(); // The first insert_slice op should be rank reducing to make sure we cover // the full source tensor to be inserted in the second insert_slice op. SliceVerificationResult result = isRankReducedType(prevOp.getDestType(), prevOp.getSourceType()); if (result != SliceVerificationResult::Success) return failure(); // Dynamic dimensions can pass rank reducing check in the above, e.g, // inserting into <1x?x1xf32>. For such cases we cannot be certain // the dynamic size covers the full tensor. if (!prevOp.getSourceType().hasStaticShape() || !prevOp.getDestType().hasStaticShape()) return failure(); rewriter.replaceOpWithNewOp( nextOp, prevOp.getSource(), nextOp.getDest(), nextOp.getMixedOffsets(), nextOp.getMixedSizes(), nextOp.getMixedStrides()); return success(); } }; /// Drop redundant rank expansion. I.e., rank expansions that are directly /// followed by rank reductions. E.g.: /// %0 = tensor.insert_slice ... : tensor<5x10xf32> into tensor<1x1x5x10xf32> /// %1 = tensor.extract_slice %0[0, 0, 2, 3] [1, 1, 2, 2] [1, 1, 1, 1] /// : tensor<1x1x5x10xf32> to tensor<2x2xf32> struct DropRedundantInsertSliceRankExpansion : public OpRewritePattern { using OpRewritePattern::OpRewritePattern; LogicalResult matchAndRewrite(ExtractSliceOp extractSliceOp, PatternRewriter &rewriter) const override { // Nothing to do if no dims are dropped. llvm::SmallBitVector droppedDims = extractSliceOp.getDroppedDims(); if (droppedDims.none()) return failure(); // Look for tensor.insert_slice op that has an inverse rank expansion. auto insertSliceOp = extractSliceOp.getSource().getDefiningOp(); if (!insertSliceOp) return failure(); llvm::SmallBitVector expandedDims = insertSliceOp.getDroppedDims(); // TODO: This could be extended to support cases where the dropped dims are // a subset of the expanded dims. if (expandedDims != droppedDims) return failure(); // The tensor.insert_slice may not be redundant if it has multiple users. if (!insertSliceOp->hasOneUse()) return failure(); // Only consider tensor.insert_slice ops that are pure rank-reductions. // I.e., no elements are taken from the destination. if (!isCastLikeInsertSliceOp(insertSliceOp)) return failure(); // Extract directly from the source. OpBuilder::InsertionGuard g(rewriter); rewriter.setInsertionPoint(extractSliceOp); SmallVector newOffsets, newSizes, newStrides; for (int64_t i = 0, e = extractSliceOp.getSourceType().getRank(); i < e; ++i) { if (droppedDims.test(i)) continue; newOffsets.push_back(extractSliceOp.getMixedOffsets()[i]); newSizes.push_back(extractSliceOp.getMixedSizes()[i]); newStrides.push_back(extractSliceOp.getMixedStrides()[i]); } rewriter.replaceOpWithNewOp( extractSliceOp, /*source=*/insertSliceOp.getSource(), newOffsets, newSizes, newStrides); rewriter.eraseOp(insertSliceOp); return success(); } }; } // namespace void mlir::tensor::populateMergeConsecutiveInsertExtractSlicePatterns( RewritePatternSet &patterns) { patterns.add, MergeConsecutiveInsertSlice>( patterns.getContext()); } void mlir::tensor::populateDropRedundantInsertSliceRankExpansionPatterns( RewritePatternSet &patterns) { patterns.add(patterns.getContext()); }