//-------------------------------------------------------------------------------------------------- // WHEN CREATING A NEW TEST, PLEASE JUST COPY & PASTE WITHOUT EDITS. // // Set-up that's shared across all tests in this directory. In principle, this // config could be moved to lit.local.cfg. However, there are downstream users that // do not use these LIT config files. Hence why this is kept inline. // // DEFINE: %{sparsifier_opts} = enable-runtime-library=true // DEFINE: %{sparsifier_opts_sve} = enable-arm-sve=true %{sparsifier_opts} // DEFINE: %{compile} = mlir-opt %s --sparsifier="%{sparsifier_opts}" // DEFINE: %{compile_sve} = mlir-opt %s --sparsifier="%{sparsifier_opts_sve}" // DEFINE: %{run_libs} = -shared-libs=%mlir_c_runner_utils,%mlir_runner_utils // DEFINE: %{run_opts} = -e entry -entry-point-result=void // DEFINE: %{run} = mlir-cpu-runner %{run_opts} %{run_libs} // DEFINE: %{run_sve} = %mcr_aarch64_cmd --march=aarch64 --mattr="+sve" %{run_opts} %{run_libs} // // DEFINE: %{env} = //-------------------------------------------------------------------------------------------------- // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and vectorization. // REDEFINE: %{sparsifier_opts} = enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true // RUN: %{compile} | %{run} | FileCheck %s // // Do the same run, but now with direct IR generation and VLA vectorization. // RUN: %if mlir_arm_sve_tests %{ %{compile_sve} | %{run_sve} | FileCheck %s %} #SparseVector = #sparse_tensor.encoding<{map = (d0) -> (d0 : compressed)}> #trait_op = { indexing_maps = [ affine_map<(i) -> (i)>, // a (in) affine_map<(i) -> (i)>, // b (in) affine_map<(i) -> (i)> // x (out) ], iterator_types = ["parallel"], doc = "x(i) = a(i) OP b(i)" } module { func.func @cadd(%arga: tensor, #SparseVector>, %argb: tensor, #SparseVector>) -> tensor, #SparseVector> { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor, #SparseVector> %xv = tensor.empty(%d) : tensor, #SparseVector> %0 = linalg.generic #trait_op ins(%arga, %argb: tensor, #SparseVector>, tensor, #SparseVector>) outs(%xv: tensor, #SparseVector>) { ^bb(%a: complex, %b: complex, %x: complex): %1 = complex.add %a, %b : complex linalg.yield %1 : complex } -> tensor, #SparseVector> return %0 : tensor, #SparseVector> } func.func @cmul(%arga: tensor, #SparseVector>, %argb: tensor, #SparseVector>) -> tensor, #SparseVector> { %c = arith.constant 0 : index %d = tensor.dim %arga, %c : tensor, #SparseVector> %xv = tensor.empty(%d) : tensor, #SparseVector> %0 = linalg.generic #trait_op ins(%arga, %argb: tensor, #SparseVector>, tensor, #SparseVector>) outs(%xv: tensor, #SparseVector>) { ^bb(%a: complex, %b: complex, %x: complex): %1 = complex.mul %a, %b : complex linalg.yield %1 : complex } -> tensor, #SparseVector> return %0 : tensor, #SparseVector> } func.func @dump(%arg0: tensor, #SparseVector>, %d: index) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index %mem = sparse_tensor.values %arg0 : tensor, #SparseVector> to memref> scf.for %i = %c0 to %d step %c1 { %v = memref.load %mem[%i] : memref> %real = complex.re %v : complex %imag = complex.im %v : complex vector.print %real : f32 vector.print %imag : f32 } return } // Driver method to call and verify complex kernels. func.func @entry() { // Setup sparse vectors. %v1 = arith.constant sparse< [ [0], [28], [31] ], [ (511.13, 2.0), (3.0, 4.0), (5.0, 6.0) ] > : tensor<32xcomplex> %v2 = arith.constant sparse< [ [1], [28], [31] ], [ (1.0, 0.0), (2.0, 0.0), (3.0, 0.0) ] > : tensor<32xcomplex> %sv1 = sparse_tensor.convert %v1 : tensor<32xcomplex> to tensor, #SparseVector> %sv2 = sparse_tensor.convert %v2 : tensor<32xcomplex> to tensor, #SparseVector> // Call sparse vector kernels. %0 = call @cadd(%sv1, %sv2) : (tensor, #SparseVector>, tensor, #SparseVector>) -> tensor, #SparseVector> %1 = call @cmul(%sv1, %sv2) : (tensor, #SparseVector>, tensor, #SparseVector>) -> tensor, #SparseVector> // // Verify the results. // // CHECK: 511.13 // CHECK-NEXT: 2 // CHECK-NEXT: 1 // CHECK-NEXT: 0 // CHECK-NEXT: 5 // CHECK-NEXT: 4 // CHECK-NEXT: 8 // CHECK-NEXT: 6 // CHECK-NEXT: 6 // CHECK-NEXT: 8 // CHECK-NEXT: 15 // CHECK-NEXT: 18 // %d1 = arith.constant 4 : index %d2 = arith.constant 2 : index call @dump(%0, %d1) : (tensor, #SparseVector>, index) -> () call @dump(%1, %d2) : (tensor, #SparseVector>, index) -> () // Release the resources. bufferization.dealloc_tensor %sv1 : tensor, #SparseVector> bufferization.dealloc_tensor %sv2 : tensor, #SparseVector> bufferization.dealloc_tensor %0 : tensor, #SparseVector> bufferization.dealloc_tensor %1 : tensor, #SparseVector> return } }