// RUN: mlir-opt %s --sparse-tensor-codegen --canonicalize --cse | FileCheck %s #SV = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }> #SparseVector = #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ], indexBitWidth = 64, pointerBitWidth = 32 }> #Dense2D = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense" ], indexBitWidth = 64, pointerBitWidth = 32 }> #Row = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "dense" ], indexBitWidth = 64, pointerBitWidth = 32 }> #CSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], indexBitWidth = 64, pointerBitWidth = 32 }> #UCSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed-no" ] }> #CSC = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(i, j) -> (j, i)> }> #DCSR = #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], indexBitWidth = 64, pointerBitWidth = 32 }> #Dense3D = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "dense" ], dimOrdering = affine_map<(i, j, k) -> (k, i, j)> }> // CHECK-LABEL: func @sparse_nop( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref) // CHECK: return %[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]] : // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_nop(%arg0: tensor) -> tensor { return %arg0 : tensor } // CHECK-LABEL: func @sparse_nop_multi_ret( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: memref<1xindex>, // CHECK-SAME: %[[A6:.*6]]: memref<3xindex>, // CHECK-SAME: %[[A7:.*7]]: memref, // CHECK-SAME: %[[A8:.*8]]: memref, // CHECK-SAME: %[[A9:.*9]]: memref) // CHECK: return %[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]], %[[A7]], %[[A8]], %[[A9]] : // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref, // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_nop_multi_ret(%arg0: tensor, %arg1: tensor) -> (tensor, tensor) { return %arg0, %arg1 : tensor, tensor } // CHECK-LABEL: func @sparse_nop_call( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: memref<1xindex>, // CHECK-SAME: %[[A6:.*6]]: memref<3xindex>, // CHECK-SAME: %[[A7:.*7]]: memref, // CHECK-SAME: %[[A8:.*8]]: memref, // CHECK-SAME: %[[A9:.*9]]: memref) // CHECK: %[[T:.*]]:10 = call @sparse_nop_multi_ret(%[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]], %[[A7]], %[[A8]], %[[A9]]) // CHECK: return %[[T]]#0, %[[T]]#1, %[[T]]#2, %[[T]]#3, %[[T]]#4, %[[T]]#5, %[[T]]#6, %[[T]]#7, %[[T]]#8, %[[T]]#9 : // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref, // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_nop_call(%arg0: tensor, %arg1: tensor) -> (tensor, tensor) { %1, %2 = call @sparse_nop_multi_ret(%arg0, %arg1) : (tensor, tensor) -> (tensor, tensor) return %1, %2: tensor, tensor } // CHECK-LABEL: func @sparse_nop_cast( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref) // CHECK: return %[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]] : // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_nop_cast(%arg0: tensor<64xf32, #SparseVector>) -> tensor { %0 = tensor.cast %arg0 : tensor<64xf32, #SparseVector> to tensor return %0 : tensor } // CHECK-LABEL: func @sparse_nop_cast_3d( // CHECK-SAME: %[[A0:.*0]]: memref<3xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<1xindex>, // CHECK-SAME: %[[A2:.*2]]: memref) // CHECK: return %[[A0]], %[[A1]], %[[A2]] : // CHECK-SAME: memref<3xindex>, memref<1xindex>, memref func.func @sparse_nop_cast_3d(%arg0: tensor<10x20x30xf32, #Dense3D>) -> tensor { %0 = tensor.cast %arg0 : tensor<10x20x30xf32, #Dense3D> to tensor return %0 : tensor } // CHECK-LABEL: func @sparse_dense_2d( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<1xindex>, // CHECK-SAME: %[[A2:.*2]]: memref) // CHECK: return func.func @sparse_dense_2d(%arg0: tensor) { return } // CHECK-LABEL: func @sparse_row( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref) // CHECK: return func.func @sparse_row(%arg0: tensor) { return } // CHECK-LABEL: func @sparse_csr( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref) // CHECK: return func.func @sparse_csr(%arg0: tensor) { return } // CHECK-LABEL: func @sparse_dcsr( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<5xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: memref, // CHECK-SAME: %[[A6:.*6]]: memref) // CHECK: return func.func @sparse_dcsr(%arg0: tensor) { return } // // Querying for dimension 1 in the tensor type can immediately // fold using the original static dimension sizes. // // CHECK-LABEL: func @sparse_dense_3d( // CHECK-SAME: %[[A0:.*0]]: memref<3xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<1xindex>, // CHECK-SAME: %[[A2:.*2]]: memref) // CHECK: %[[C:.*]] = arith.constant 20 : index // CHECK: return %[[C]] : index func.func @sparse_dense_3d(%arg0: tensor<10x20x30xf64, #Dense3D>) -> index { %c = arith.constant 1 : index %0 = tensor.dim %arg0, %c : tensor<10x20x30xf64, #Dense3D> return %0 : index } // // Querying for dimension 1 in the tensor type needs to be permuted // into querying for dimension 2 in the stored sparse tensor scheme, // since the latter honors the dimOrdering. // // CHECK-LABEL: func @sparse_dense_3d_dyn( // CHECK-SAME: %[[A0:.*0]]: memref<3xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<1xindex>, // CHECK-SAME: %[[A2:.*2]]: memref) // CHECK: %[[C:.*]] = arith.constant 2 : index // CHECK: %[[L:.*]] = memref.load %[[A0]][%[[C]]] : memref<3xindex> // CHECK: return %[[L]] : index func.func @sparse_dense_3d_dyn(%arg0: tensor) -> index { %c = arith.constant 1 : index %0 = tensor.dim %arg0, %c : tensor return %0 : index } // CHECK-LABEL: func @sparse_pointers_dcsr( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<5xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: memref, // CHECK-SAME: %[[A6:.*6]]: memref) // CHECK: return %[[A4]] : memref func.func @sparse_pointers_dcsr(%arg0: tensor) -> memref { %0 = sparse_tensor.pointers %arg0 { dimension = 1 : index } : tensor to memref return %0 : memref } // CHECK-LABEL: func @sparse_indices_dcsr( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<5xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: memref, // CHECK-SAME: %[[A6:.*6]]: memref) // CHECK: return %[[A5]] : memref func.func @sparse_indices_dcsr(%arg0: tensor) -> memref { %0 = sparse_tensor.indices %arg0 { dimension = 1 : index } : tensor to memref return %0 : memref } // CHECK-LABEL: func @sparse_values_dcsr( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<5xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: memref, // CHECK-SAME: %[[A6:.*6]]: memref) // CHECK: return %[[A6]] : memref func.func @sparse_values_dcsr(%arg0: tensor) -> memref { %0 = sparse_tensor.values %arg0 : tensor to memref return %0 : memref } // CHECK-LABEL: func @sparse_noe( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref) // CHECK: %[[C2:.*]] = arith.constant 2 : index // CHECK: %[[NOE:.*]] = memref.load %[[A1]][%[[C2]]] : memref<3xindex> // CHECK: return %[[NOE]] : index func.func @sparse_noe(%arg0: tensor<128xf64, #SparseVector>) -> index { %0 = sparse_tensor.number_of_entries %arg0 : tensor<128xf64, #SparseVector> return %0 : index } // CHECK-LABEL: func @sparse_dealloc_csr( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref) // CHECK: memref.dealloc %[[A0]] : memref<2xindex> // CHECK: memref.dealloc %[[A1]] : memref<3xindex> // CHECK: memref.dealloc %[[A2]] : memref // CHECK: memref.dealloc %[[A3]] : memref // CHECK: memref.dealloc %[[A4]] : memref // CHECK: return func.func @sparse_dealloc_csr(%arg0: tensor) { bufferization.dealloc_tensor %arg0 : tensor return } // CHECK-LABEL: func @sparse_alloc_csc( // CHECK-SAME: %[[A:.*]]: index) -> // CHECK-SAME: memref<2xindex>, memref<3xindex>, memref, memref, memref // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[C10:.*]] = arith.constant 10 : index // CHECK: %[[T0:.*]] = memref.alloc() : memref<2xindex> // CHECK: %[[T1:.*]] = memref.alloc() : memref<3xindex> // CHECK: %[[T2:.*]] = memref.alloc() : memref<16xindex> // CHECK: %[[T3:.*]] = memref.cast %[[T2]] : memref<16xindex> to memref // CHECK: %[[T4:.*]] = memref.alloc() : memref<16xindex> // CHECK: %[[T5:.*]] = memref.cast %[[T4]] : memref<16xindex> to memref // CHECK: %[[T6:.*]] = memref.alloc() : memref<16xf64> // CHECK: %[[T7:.*]] = memref.cast %[[T6]] : memref<16xf64> to memref // CHECK: linalg.fill ins(%[[C0]] : index) outs(%[[T1]] : memref<3xindex>) // CHECK: memref.store %[[A]], %[[T0]][%[[C0]]] : memref<2xindex> // CHECK: memref.store %[[C10]], %[[T0]][%[[C1]]] : memref<2xindex> // CHECK: %[[P0:.*]] = sparse_tensor.push_back %[[T1]], %[[T3]] // CHECK: %[[P1:.*]] = sparse_tensor.push_back %[[T1]], %[[P0]] // CHECK: return %[[T0]], %[[T1]], %[[P1]], %[[T5]], %[[T7]] : // CHECK-SAME: memref<2xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_alloc_csc(%arg0: index) -> tensor<10x?xf64, #CSC> { %0 = bufferization.alloc_tensor(%arg0) : tensor<10x?xf64, #CSC> %1 = sparse_tensor.load %0 : tensor<10x?xf64, #CSC> return %1 : tensor<10x?xf64, #CSC> } // CHECK-LABEL: func @sparse_alloc_3d() -> // CHECK-SAME: memref<3xindex>, memref<1xindex>, memref // CHECK-DAG: %[[F0:.*]] = arith.constant 0.000000e+00 : f64 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-DAG: %[[C2:.*]] = arith.constant 2 : index // CHECK-DAG: %[[C10:.*]] = arith.constant 10 : index // CHECK-DAG: %[[C20:.*]] = arith.constant 20 : index // CHECK-DAG: %[[C30:.*]] = arith.constant 30 : index // CHECK-DAG: %[[C6000:.*]] = arith.constant 6000 : index // CHECK: %[[A0:.*]] = memref.alloc() : memref<3xindex> // CHECK: %[[A1:.*]] = memref.alloc() : memref<1xindex> // CHECK: %[[AV:.*]] = memref.alloc() : memref<16xf64> // CHECK: %[[A2:.*]] = memref.cast %[[AV]] : memref<16xf64> to memref // CHECK: linalg.fill ins(%[[C0]] : index) outs(%[[A1]] : memref<1xindex>) // CHECK: memref.store %[[C30]], %[[A0]][%[[C0]]] : memref<3xindex> // CHECK: memref.store %[[C10]], %[[A0]][%[[C1]]] : memref<3xindex> // CHECK: memref.store %[[C20]], %[[A0]][%[[C2]]] : memref<3xindex> // CHECK: %[[P:.*]] = sparse_tensor.push_back %[[A1]], %[[A2]], %[[F0]], %[[C6000]] // CHECK: return %[[A0]], %[[A1]], %[[P]] : // CHECK-SAME: memref<3xindex>, memref<1xindex>, memref func.func @sparse_alloc_3d() -> tensor<10x20x30xf64, #Dense3D> { %0 = bufferization.alloc_tensor() : tensor<10x20x30xf64, #Dense3D> %1 = sparse_tensor.load %0 : tensor<10x20x30xf64, #Dense3D> return %1 : tensor<10x20x30xf64, #Dense3D> } // CHECK-LABEL: func.func @sparse_expansion1() // CHECK: %[[A:.*]] = memref.alloc() : memref<8xf64> // CHECK: %[[B:.*]] = memref.alloc() : memref<8xi1> // CHECK: %[[C:.*]] = memref.alloc() : memref<8xindex> // CHECK: %[[D:.*]] = memref.cast %[[C]] : memref<8xindex> to memref // CHECK-DAG: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref<8xf64>) // CHECK-DAG: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref<8xi1>) // CHECK: return %[[D]] : memref func.func @sparse_expansion1() -> memref { %0 = bufferization.alloc_tensor() : tensor<4x8xf64, #CSR> %values, %filled, %added, %count = sparse_tensor.expand %0 : tensor<4x8xf64, #CSR> to memref, memref, memref return %added : memref } // CHECK-LABEL: func.func @sparse_expansion2() // CHECK: %[[A:.*]] = memref.alloc() : memref<4xf64> // CHECK: %[[B:.*]] = memref.alloc() : memref<4xi1> // CHECK: %[[C:.*]] = memref.alloc() : memref<4xindex> // CHECK: %[[D:.*]] = memref.cast %[[C]] : memref<4xindex> to memref // CHECK-DAG: linalg.fill ins(%{{.*}} : f64) outs(%[[A]] : memref<4xf64>) // CHECK-DAG: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref<4xi1>) // CHECK: return %[[D]] : memref func.func @sparse_expansion2() -> memref { %0 = bufferization.alloc_tensor() : tensor<4x8xf64, #CSC> %values, %filled, %added, %count = sparse_tensor.expand %0 : tensor<4x8xf64, #CSC> to memref, memref, memref return %added : memref } // CHECK-LABEL: func.func @sparse_expansion3( // CHECK-SAME: %[[D0:.*]]: index, // CHECK-SAME: %{{.*}}: index) -> memref { // CHECK: %[[C1:.*]] = arith.constant 1 : index // CHECK: %[[S0:.*]] = memref.alloc() : memref<2xindex> // CHECK: memref.store %[[D0]], %[[S0]]{{\[}}%[[C1]]] : memref<2xindex> // CHECK: %[[D1:.*]] = memref.load %[[S0]]{{\[}}%[[C1]]] : memref<2xindex> // CHECK: %[[V:.*]] = memref.alloc(%[[D1]]) : memref // CHECK: %[[B:.*]] = memref.alloc(%[[D1]]) : memref // CHECK: %[[D:.*]] = memref.alloc(%[[D1]]) : memref // CHECK: linalg.fill ins(%{{.*}} : f64) outs(%[[V]] : memref) // CHECK: linalg.fill ins(%{{.*}} : i1) outs(%[[B]] : memref) // CHECK: return %[[D]] : memref func.func @sparse_expansion3(%arg0: index, %arg1: index) -> memref { %0 = bufferization.alloc_tensor(%arg0, %arg1) : tensor %values, %filled, %added, %count = sparse_tensor.expand %0 : tensor to memref, memref, memref return %added : memref } // CHECK-LABEL: func.func private @_insert_C_100_f64_0_0( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: index, // CHECK-SAME: %[[A6:.*6]]: f64) // CHECK: %[[PV:.*]] = sparse_tensor.push_back %[[A1]], %[[A4]], %[[A6]] {idx = 2 : index} : memref<3xindex>, memref, f64 // CHECK: return %[[A0]], %[[A1]], %[[A2]], %{{.*}}, %[[PV]] // // CHECK-LABEL: func @sparse_compression_1d( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: memref, // CHECK-SAME: %[[A6:.*6]]: memref, // CHECK-SAME: %[[A7:.*7]]: memref, // CHECK-SAME: %[[A8:.*8]]: index) // CHECK-DAG: %[[B0:.*]] = arith.constant false // CHECK-DAG: %[[F0:.*]] = arith.constant 0.000000e+00 : f64 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK: sparse_tensor.sort %[[A8]], %[[A7]] : memref // CHECK: %[[R:.*]]:5 = scf.for %[[I:.*]] = %[[C0]] to %[[A8]] step %[[C1]] // CHECK-SAME: iter_args(%[[P0:.*]] = %[[A0]], %[[P1:.*]] = %[[A1]], %[[P2:.*]] = %[[A2]], %[[P3:.*]] = %[[A3]], %[[P4:.*]] = %[[A4]]) -> (memref<1xindex>, memref<3xindex>, memref, memref, memref) { // CHECK: %[[INDEX:.*]] = memref.load %[[A7]][%[[I]]] : memref // CHECK: %[[VAL:.*]] = memref.load %[[A5]][%[[INDEX]]] : memref // CHECK: %[[C:.*]]:5 = func.call @_insert_C_100_f64_0_0(%[[P0]], %[[P1]], %[[P2]], %[[P3]], %[[P4]], %[[INDEX]], %[[VAL]]) // CHECK: memref.store %[[F0]], %[[A5]][%[[INDEX]]] : memref // CHECK: memref.store %[[B0]], %[[A6]][%[[INDEX]]] : memref // CHECK: scf.yield %[[C]]#0, %[[C]]#1, %[[C]]#2, %[[C]]#3, %[[C]]#4 : memref<1xindex>, memref<3xindex>, memref, memref, memref // CHECK: } // CHECK: memref.dealloc %[[A5]] : memref // CHECK: memref.dealloc %[[A6]] : memref // CHECK: memref.dealloc %[[A7]] : memref // CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3, %[[R]]#4 // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_compression_1d(%tensor: tensor<100xf64, #SV>, %values: memref, %filled: memref, %added: memref, %count: index) -> tensor<100xf64, #SV> { %0 = sparse_tensor.compress %values, %filled, %added, %count into %tensor[] : memref, memref, memref, tensor<100xf64, #SV> %1 = sparse_tensor.load %0 hasInserts : tensor<100xf64, #SV> return %1 : tensor<100xf64, #SV> } // CHECK-LABEL: func.func private @_insert_D_C_8_8_f64_64_32( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: index, // CHECK-SAME: %[[A6:.*6]]: index, // CHECK-SAME: %[[A7:.*7]]: f64) // CHECK: %[[PV:.*]] = sparse_tensor.push_back %[[A1]], %[[A4]], %[[A7]] {idx = 2 : index} : memref<3xindex>, memref, f64 // CHECK: return %[[A0]], %[[A1]], %[[A2]], %{{.*}}, %[[PV]] // // CHECK-LABEL: func @sparse_compression( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: memref, // CHECK-SAME: %[[A6:.*6]]: memref, // CHECK-SAME: %[[A7:.*7]]: memref, // CHECK-SAME: %[[A8:.*8]]: index, // CHECK-SAME: %[[A9:.*9]]: index) // CHECK-DAG: %[[B0:.*]] = arith.constant false // CHECK-DAG: %[[F0:.*]] = arith.constant 0.000000e+00 : f64 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK: sparse_tensor.sort %[[A8]], %[[A7]] : memref // CHECK: %[[R:.*]]:5 = scf.for %[[I:.*]] = %[[C0]] to %[[A8]] step %[[C1]] // CHECK-SAME: iter_args(%[[P0:.*]] = %[[A0]], %[[P1:.*]] = %[[A1]], %[[P2:.*]] = %[[A2]], %[[P3:.*]] = %[[A3]], %[[P4:.*]] = %[[A4]]) -> (memref<2xindex>, memref<3xindex>, memref, memref, memref) { // CHECK: %[[INDEX:.*]] = memref.load %[[A7]][%[[I]]] : memref // CHECK: %[[VAL:.*]] = memref.load %[[A5]][%[[INDEX]]] : memref // CHECK: %[[C:.*]]:5 = func.call @_insert_D_C_8_8_f64_64_32(%[[P0]], %[[P1]], %[[P2]], %[[P3]], %[[P4]], %[[A9]], %[[INDEX]], %[[VAL]]) // CHECK: memref.store %[[F0]], %[[A5]][%[[INDEX]]] : memref // CHECK: memref.store %[[B0]], %[[A6]][%[[INDEX]]] : memref // CHECK: scf.yield %[[C]]#0, %[[C]]#1, %[[C]]#2, %[[C]]#3, %[[C]]#4 : memref<2xindex>, memref<3xindex>, memref, memref, memref // CHECK: } // CHECK: memref.dealloc %[[A5]] : memref // CHECK: memref.dealloc %[[A6]] : memref // CHECK: memref.dealloc %[[A7]] : memref // CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3, %[[R]]#4 // CHECK-SAME: memref<2xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_compression(%tensor: tensor<8x8xf64, #CSR>, %values: memref, %filled: memref, %added: memref, %count: index, %i: index) -> tensor<8x8xf64, #CSR> { %0 = sparse_tensor.compress %values, %filled, %added, %count into %tensor[%i] : memref, memref, memref, tensor<8x8xf64, #CSR> %1 = sparse_tensor.load %0 hasInserts : tensor<8x8xf64, #CSR> return %1 : tensor<8x8xf64, #CSR> } // CHECK-LABEL: func.func private @_insert_D_C_8_8_f64_0_0( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: index, // CHECK-SAME: %[[A6:.*6]]: index, // CHECK-SAME: %[[A7:.*7]]: f64) // CHECK: %[[PV:.*]] = sparse_tensor.push_back %[[A1]], %[[A4]], %[[A7]] {idx = 2 : index} : memref<3xindex>, memref, f64 // CHECK: return %[[A0]], %[[A1]], %[[A2]], %{{.*}}, %[[PV]] // // CHECK-LABEL: func @sparse_compression_unordered( // CHECK-SAME: %[[A0:.*0]]: memref<2xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: memref, // CHECK-SAME: %[[A6:.*6]]: memref, // CHECK-SAME: %[[A7:.*7]]: memref, // CHECK-SAME: %[[A8:.*8]]: index, // CHECK-SAME: %[[A9:.*9]]: index) // CHECK-DAG: %[[B0:.*]] = arith.constant false // CHECK-DAG: %[[F0:.*]] = arith.constant 0.000000e+00 : f64 // CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index // CHECK-DAG: %[[C1:.*]] = arith.constant 1 : index // CHECK-NOT: sparse_tensor.sort // CHECK: %[[R:.*]]:5 = scf.for %[[I:.*]] = %[[C0]] to %[[A8]] step %[[C1]] // CHECK-SAME: iter_args(%[[P0:.*]] = %[[A0]], %[[P1:.*]] = %[[A1]], %[[P2:.*]] = %[[A2]], %[[P3:.*]] = %[[A3]], %[[P4:.*]] = %[[A4]]) -> (memref<2xindex>, memref<3xindex>, memref, memref, memref) { // CHECK: %[[INDEX:.*]] = memref.load %[[A7]][%[[I]]] : memref // CHECK: %[[VAL:.*]] = memref.load %[[A5]][%[[INDEX]]] : memref // CHECK: %[[C:.*]]:5 = func.call @_insert_D_C_8_8_f64_0_0(%[[P0]], %[[P1]], %[[P2]], %[[P3]], %[[P4]], %[[A9]], %[[INDEX]], %[[VAL]]) // CHECK: memref.store %[[F0]], %[[A5]][%[[INDEX]]] : memref // CHECK: memref.store %[[B0]], %[[A6]][%[[INDEX]]] : memref // CHECK: scf.yield %[[C]]#0, %[[C]]#1, %[[C]]#2, %[[C]]#3, %[[C]]#4 : memref<2xindex>, memref<3xindex>, memref, memref, memref // CHECK: } // CHECK: memref.dealloc %[[A5]] : memref // CHECK: memref.dealloc %[[A6]] : memref // CHECK: memref.dealloc %[[A7]] : memref // CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3, %[[R]]#4 // CHECK-SAME: memref<2xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_compression_unordered(%tensor: tensor<8x8xf64, #UCSR>, %values: memref, %filled: memref, %added: memref, %count: index, %i: index) -> tensor<8x8xf64, #UCSR> { %0 = sparse_tensor.compress %values, %filled, %added, %count into %tensor[%i] : memref, memref, memref, tensor<8x8xf64, #UCSR> %1 = sparse_tensor.load %0 hasInserts : tensor<8x8xf64, #UCSR> return %1 : tensor<8x8xf64, #UCSR> } // CHECK-LABEL: func.func private @_insert_C_128_f64_0_0( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: index, // CHECK-SAME: %[[A6:.*6]]: f64) // CHECK: %[[P:.*]] = sparse_tensor.push_back %[[A1]], %[[A4]], %[[A6]] {idx = 2 : index} : memref<3xindex>, memref, f64 // CHECK: return %[[A0]], %[[A1]], %[[A2]], %{{.*}}, %[[P]] : // CHECK: func @sparse_insert( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: index, // CHECK-SAME: %[[A6:.*6]]: f64) // CHECK: %[[R:.*]]:5 = call @_insert_C_128_f64_0_0(%[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]]) // CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3, %[[R]]#4 // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_insert(%arg0: tensor<128xf64, #SV>, %arg1: index, %arg2: f64) -> tensor<128xf64, #SV> { %0 = sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SV> %1 = sparse_tensor.load %0 hasInserts : tensor<128xf64, #SV> return %1 : tensor<128xf64, #SV> } // CHECK-LABEL: func.func private @_insert_C_128_f64_64_32( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: index, // CHECK-SAME: %[[A6:.*6]]: f64) // CHECK: %[[P:.*]] = sparse_tensor.push_back %[[A1]], %[[A4]], %[[A6]] {idx = 2 : index} : memref<3xindex>, memref, f64 // CHECK: return %[[A0]], %[[A1]], %[[A2]], %{{.*}}, %[[P]] : // CHECK: func @sparse_insert_typed( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref, // CHECK-SAME: %[[A5:.*5]]: index, // CHECK-SAME: %[[A6:.*6]]: f64) // CHECK: %[[R:.*]]:5 = call @_insert_C_128_f64_64_32(%[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]], %[[A5]], %[[A6]]) // CHECK: return %[[R]]#0, %[[R]]#1, %[[R]]#2, %[[R]]#3, %[[R]]#4 // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_insert_typed(%arg0: tensor<128xf64, #SparseVector>, %arg1: index, %arg2: f64) -> tensor<128xf64, #SparseVector> { %0 = sparse_tensor.insert %arg2 into %arg0[%arg1] : tensor<128xf64, #SparseVector> %1 = sparse_tensor.load %0 hasInserts : tensor<128xf64, #SparseVector> return %1 : tensor<128xf64, #SparseVector> } // CHECK-LABEL: func.func @sparse_nop_convert( // CHECK-SAME: %[[A0:.*0]]: memref<1xindex>, // CHECK-SAME: %[[A1:.*1]]: memref<3xindex>, // CHECK-SAME: %[[A2:.*2]]: memref, // CHECK-SAME: %[[A3:.*3]]: memref, // CHECK-SAME: %[[A4:.*4]]: memref) // CHECK: return %[[A0]], %[[A1]], %[[A2]], %[[A3]], %[[A4]] : // CHECK-SAME: memref<1xindex>, memref<3xindex>, memref, memref, memref func.func @sparse_nop_convert(%arg0: tensor<32xf32, #SparseVector>) -> tensor { %0 = sparse_tensor.convert %arg0 : tensor<32xf32, #SparseVector> to tensor return %0 : tensor }