//===- Synchronization.cpp - OpenMP Device synchronization API ---- c++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Include all synchronization. // //===----------------------------------------------------------------------===// #include "Synchronization.h" #include "Debug.h" #include "Interface.h" #include "Mapping.h" #include "State.h" #include "Types.h" #include "Utils.h" #pragma omp begin declare target device_type(nohost) using namespace ompx; namespace impl { /// Atomics /// ///{ /// NOTE: This function needs to be implemented by every target. uint32_t atomicInc(uint32_t *Address, uint32_t Val, atomic::OrderingTy Ordering, atomic::MemScopeTy MemScope); template Ty atomicAdd(Ty *Address, Ty Val, atomic::OrderingTy Ordering) { return __scoped_atomic_fetch_add(Address, Val, Ordering, __MEMORY_SCOPE_DEVICE); } template Ty atomicMul(Ty *Address, Ty V, atomic::OrderingTy Ordering) { Ty TypedCurrentVal, TypedResultVal, TypedNewVal; bool Success; do { TypedCurrentVal = atomic::load(Address, Ordering); TypedNewVal = TypedCurrentVal * V; Success = atomic::cas(Address, TypedCurrentVal, TypedNewVal, Ordering, atomic::relaxed); } while (!Success); return TypedResultVal; } template Ty atomicLoad(Ty *Address, atomic::OrderingTy Ordering) { return atomicAdd(Address, Ty(0), Ordering); } template void atomicStore(Ty *Address, Ty Val, atomic::OrderingTy Ordering) { __scoped_atomic_store_n(Address, Val, Ordering, __MEMORY_SCOPE_DEVICE); } template bool atomicCAS(Ty *Address, Ty ExpectedV, Ty DesiredV, atomic::OrderingTy OrderingSucc, atomic::OrderingTy OrderingFail) { return __scoped_atomic_compare_exchange(Address, &ExpectedV, &DesiredV, false, OrderingSucc, OrderingFail, __MEMORY_SCOPE_DEVICE); } template Ty atomicMin(Ty *Address, Ty Val, atomic::OrderingTy Ordering) { return __scoped_atomic_fetch_min(Address, Val, Ordering, __MEMORY_SCOPE_DEVICE); } template Ty atomicMax(Ty *Address, Ty Val, atomic::OrderingTy Ordering) { return __scoped_atomic_fetch_max(Address, Val, Ordering, __MEMORY_SCOPE_DEVICE); } // TODO: Implement this with __atomic_fetch_max and remove the duplication. template Ty atomicMinFP(Ty *Address, Ty Val, atomic::OrderingTy Ordering) { if (Val >= 0) return atomicMin((STy *)Address, utils::convertViaPun(Val), Ordering); return atomicMax((UTy *)Address, utils::convertViaPun(Val), Ordering); } template Ty atomicMaxFP(Ty *Address, Ty Val, atomic::OrderingTy Ordering) { if (Val >= 0) return atomicMax((STy *)Address, utils::convertViaPun(Val), Ordering); return atomicMin((UTy *)Address, utils::convertViaPun(Val), Ordering); } template Ty atomicOr(Ty *Address, Ty Val, atomic::OrderingTy Ordering) { return __scoped_atomic_fetch_or(Address, Val, Ordering, __MEMORY_SCOPE_DEVICE); } template Ty atomicAnd(Ty *Address, Ty Val, atomic::OrderingTy Ordering) { return __scoped_atomic_fetch_and(Address, Val, Ordering, __MEMORY_SCOPE_DEVICE); } template Ty atomicXOr(Ty *Address, Ty Val, atomic::OrderingTy Ordering) { return __scoped_atomic_fetch_xor(Address, Val, Ordering, __MEMORY_SCOPE_DEVICE); } uint32_t atomicExchange(uint32_t *Address, uint32_t Val, atomic::OrderingTy Ordering) { uint32_t R; __scoped_atomic_exchange(Address, &Val, &R, Ordering, __MEMORY_SCOPE_DEVICE); return R; } ///} // Forward declarations defined to be defined for AMDGCN and NVPTX. uint32_t atomicInc(uint32_t *A, uint32_t V, atomic::OrderingTy Ordering, atomic::MemScopeTy MemScope); void namedBarrierInit(); void namedBarrier(); void fenceTeam(atomic::OrderingTy Ordering); void fenceKernel(atomic::OrderingTy Ordering); void fenceSystem(atomic::OrderingTy Ordering); void syncWarp(__kmpc_impl_lanemask_t); void syncThreads(atomic::OrderingTy Ordering); void syncThreadsAligned(atomic::OrderingTy Ordering) { syncThreads(Ordering); } void unsetLock(omp_lock_t *); int testLock(omp_lock_t *); void initLock(omp_lock_t *); void destroyLock(omp_lock_t *); void setLock(omp_lock_t *); void unsetCriticalLock(omp_lock_t *); void setCriticalLock(omp_lock_t *); /// AMDGCN Implementation /// ///{ #pragma omp begin declare variant match(device = {arch(amdgcn)}) uint32_t atomicInc(uint32_t *A, uint32_t V, atomic::OrderingTy Ordering, atomic::MemScopeTy MemScope) { // builtin_amdgcn_atomic_inc32 should expand to this switch when // passed a runtime value, but does not do so yet. Workaround here. #define ScopeSwitch(ORDER) \ switch (MemScope) { \ case atomic::MemScopeTy::all: \ return __builtin_amdgcn_atomic_inc32(A, V, ORDER, ""); \ case atomic::MemScopeTy::device: \ return __builtin_amdgcn_atomic_inc32(A, V, ORDER, "agent"); \ case atomic::MemScopeTy::cgroup: \ return __builtin_amdgcn_atomic_inc32(A, V, ORDER, "workgroup"); \ } #define Case(ORDER) \ case ORDER: \ ScopeSwitch(ORDER) switch (Ordering) { default: __builtin_unreachable(); Case(atomic::relaxed); Case(atomic::aquire); Case(atomic::release); Case(atomic::acq_rel); Case(atomic::seq_cst); #undef Case #undef ScopeSwitch } } uint32_t SHARED(namedBarrierTracker); void namedBarrierInit() { // Don't have global ctors, and shared memory is not zero init atomic::store(&namedBarrierTracker, 0u, atomic::release); } void namedBarrier() { uint32_t NumThreads = omp_get_num_threads(); // assert(NumThreads % 32 == 0); uint32_t WarpSize = mapping::getWarpSize(); uint32_t NumWaves = NumThreads / WarpSize; fence::team(atomic::aquire); // named barrier implementation for amdgcn. // Uses two 16 bit unsigned counters. One for the number of waves to have // reached the barrier, and one to count how many times the barrier has been // passed. These are packed in a single atomically accessed 32 bit integer. // Low bits for the number of waves, assumed zero before this call. // High bits to count the number of times the barrier has been passed. // precondition: NumWaves != 0; // invariant: NumWaves * WarpSize == NumThreads; // precondition: NumWaves < 0xffffu; // Increment the low 16 bits once, using the lowest active thread. if (mapping::isLeaderInWarp()) { uint32_t load = atomic::add(&namedBarrierTracker, 1, atomic::relaxed); // commutative // Record the number of times the barrier has been passed uint32_t generation = load & 0xffff0000u; if ((load & 0x0000ffffu) == (NumWaves - 1)) { // Reached NumWaves in low bits so this is the last wave. // Set low bits to zero and increment high bits load += 0x00010000u; // wrap is safe load &= 0xffff0000u; // because bits zeroed second // Reset the wave counter and release the waiting waves atomic::store(&namedBarrierTracker, load, atomic::relaxed); } else { // more waves still to go, spin until generation counter changes do { __builtin_amdgcn_s_sleep(0); load = atomic::load(&namedBarrierTracker, atomic::relaxed); } while ((load & 0xffff0000u) == generation); } } fence::team(atomic::release); } // sema checking of amdgcn_fence is aggressive. Intention is to patch clang // so that it is usable within a template environment and so that a runtime // value of the memory order is expanded to this switch within clang/llvm. void fenceTeam(atomic::OrderingTy Ordering) { switch (Ordering) { default: __builtin_unreachable(); case atomic::aquire: return __builtin_amdgcn_fence(atomic::aquire, "workgroup"); case atomic::release: return __builtin_amdgcn_fence(atomic::release, "workgroup"); case atomic::acq_rel: return __builtin_amdgcn_fence(atomic::acq_rel, "workgroup"); case atomic::seq_cst: return __builtin_amdgcn_fence(atomic::seq_cst, "workgroup"); } } void fenceKernel(atomic::OrderingTy Ordering) { switch (Ordering) { default: __builtin_unreachable(); case atomic::aquire: return __builtin_amdgcn_fence(atomic::aquire, "agent"); case atomic::release: return __builtin_amdgcn_fence(atomic::release, "agent"); case atomic::acq_rel: return __builtin_amdgcn_fence(atomic::acq_rel, "agent"); case atomic::seq_cst: return __builtin_amdgcn_fence(atomic::seq_cst, "agent"); } } void fenceSystem(atomic::OrderingTy Ordering) { switch (Ordering) { default: __builtin_unreachable(); case atomic::aquire: return __builtin_amdgcn_fence(atomic::aquire, ""); case atomic::release: return __builtin_amdgcn_fence(atomic::release, ""); case atomic::acq_rel: return __builtin_amdgcn_fence(atomic::acq_rel, ""); case atomic::seq_cst: return __builtin_amdgcn_fence(atomic::seq_cst, ""); } } void syncWarp(__kmpc_impl_lanemask_t) { // This is a no-op on current AMDGPU hardware but it is used by the optimizer // to enforce convergent behaviour between control flow graphs. __builtin_amdgcn_wave_barrier(); } void syncThreads(atomic::OrderingTy Ordering) { if (Ordering != atomic::relaxed) fenceTeam(Ordering == atomic::acq_rel ? atomic::release : atomic::seq_cst); __builtin_amdgcn_s_barrier(); if (Ordering != atomic::relaxed) fenceTeam(Ordering == atomic::acq_rel ? atomic::aquire : atomic::seq_cst); } void syncThreadsAligned(atomic::OrderingTy Ordering) { syncThreads(Ordering); } // TODO: Don't have wavefront lane locks. Possibly can't have them. void unsetLock(omp_lock_t *) { __builtin_trap(); } int testLock(omp_lock_t *) { __builtin_trap(); } void initLock(omp_lock_t *) { __builtin_trap(); } void destroyLock(omp_lock_t *) { __builtin_trap(); } void setLock(omp_lock_t *) { __builtin_trap(); } constexpr uint32_t UNSET = 0; constexpr uint32_t SET = 1; void unsetCriticalLock(omp_lock_t *Lock) { (void)atomicExchange((uint32_t *)Lock, UNSET, atomic::acq_rel); } void setCriticalLock(omp_lock_t *Lock) { uint64_t LowestActiveThread = utils::ffs(mapping::activemask()) - 1; if (mapping::getThreadIdInWarp() == LowestActiveThread) { fenceKernel(atomic::release); while (!atomicCAS((uint32_t *)Lock, UNSET, SET, atomic::relaxed, atomic::relaxed)) { __builtin_amdgcn_s_sleep(32); } fenceKernel(atomic::aquire); } } #pragma omp end declare variant ///} /// NVPTX Implementation /// ///{ #pragma omp begin declare variant match( \ device = {arch(nvptx, nvptx64)}, \ implementation = {extension(match_any)}) uint32_t atomicInc(uint32_t *Address, uint32_t Val, atomic::OrderingTy Ordering, atomic::MemScopeTy MemScope) { return __nvvm_atom_inc_gen_ui(Address, Val); } void namedBarrierInit() {} void namedBarrier() { uint32_t NumThreads = omp_get_num_threads(); ASSERT(NumThreads % 32 == 0, nullptr); // The named barrier for active parallel threads of a team in an L1 parallel // region to synchronize with each other. constexpr int BarrierNo = 7; __nvvm_barrier_sync_cnt(BarrierNo, NumThreads); } void fenceTeam(atomic::OrderingTy) { __nvvm_membar_cta(); } void fenceKernel(atomic::OrderingTy) { __nvvm_membar_gl(); } void fenceSystem(atomic::OrderingTy) { __nvvm_membar_sys(); } void syncWarp(__kmpc_impl_lanemask_t Mask) { __nvvm_bar_warp_sync(Mask); } void syncThreads(atomic::OrderingTy Ordering) { constexpr int BarrierNo = 8; __nvvm_barrier_sync(BarrierNo); } void syncThreadsAligned(atomic::OrderingTy Ordering) { __syncthreads(); } constexpr uint32_t OMP_SPIN = 1000; constexpr uint32_t UNSET = 0; constexpr uint32_t SET = 1; // TODO: This seems to hide a bug in the declare variant handling. If it is // called before it is defined // here the overload won't happen. Investigate lalter! void unsetLock(omp_lock_t *Lock) { (void)atomicExchange((uint32_t *)Lock, UNSET, atomic::seq_cst); } int testLock(omp_lock_t *Lock) { return atomicAdd((uint32_t *)Lock, 0u, atomic::seq_cst); } void initLock(omp_lock_t *Lock) { unsetLock(Lock); } void destroyLock(omp_lock_t *Lock) { unsetLock(Lock); } void setLock(omp_lock_t *Lock) { // TODO: not sure spinning is a good idea here.. while (atomicCAS((uint32_t *)Lock, UNSET, SET, atomic::seq_cst, atomic::seq_cst) != UNSET) { int32_t start = __nvvm_read_ptx_sreg_clock(); int32_t now; for (;;) { now = __nvvm_read_ptx_sreg_clock(); int32_t cycles = now > start ? now - start : now + (0xffffffff - start); if (cycles >= OMP_SPIN * mapping::getBlockIdInKernel()) { break; } } } // wait for 0 to be the read value } #pragma omp end declare variant ///} } // namespace impl void synchronize::init(bool IsSPMD) { if (!IsSPMD) impl::namedBarrierInit(); } void synchronize::warp(LaneMaskTy Mask) { impl::syncWarp(Mask); } void synchronize::threads(atomic::OrderingTy Ordering) { impl::syncThreads(Ordering); } void synchronize::threadsAligned(atomic::OrderingTy Ordering) { impl::syncThreadsAligned(Ordering); } void fence::team(atomic::OrderingTy Ordering) { impl::fenceTeam(Ordering); } void fence::kernel(atomic::OrderingTy Ordering) { impl::fenceKernel(Ordering); } void fence::system(atomic::OrderingTy Ordering) { impl::fenceSystem(Ordering); } #define ATOMIC_COMMON_OP(TY) \ TY atomic::add(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ return impl::atomicAdd(Addr, V, Ordering); \ } \ TY atomic::mul(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ return impl::atomicMul(Addr, V, Ordering); \ } \ TY atomic::load(TY *Addr, atomic::OrderingTy Ordering) { \ return impl::atomicLoad(Addr, Ordering); \ } \ bool atomic::cas(TY *Addr, TY ExpectedV, TY DesiredV, \ atomic::OrderingTy OrderingSucc, \ atomic::OrderingTy OrderingFail) { \ return impl::atomicCAS(Addr, ExpectedV, DesiredV, OrderingSucc, \ OrderingFail); \ } #define ATOMIC_FP_ONLY_OP(TY, STY, UTY) \ TY atomic::min(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ return impl::atomicMinFP(Addr, V, Ordering); \ } \ TY atomic::max(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ return impl::atomicMaxFP(Addr, V, Ordering); \ } \ void atomic::store(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ impl::atomicStore(reinterpret_cast(Addr), \ utils::convertViaPun(V), Ordering); \ } #define ATOMIC_INT_ONLY_OP(TY) \ TY atomic::min(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ return impl::atomicMin(Addr, V, Ordering); \ } \ TY atomic::max(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ return impl::atomicMax(Addr, V, Ordering); \ } \ TY atomic::bit_or(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ return impl::atomicOr(Addr, V, Ordering); \ } \ TY atomic::bit_and(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ return impl::atomicAnd(Addr, V, Ordering); \ } \ TY atomic::bit_xor(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ return impl::atomicXOr(Addr, V, Ordering); \ } \ void atomic::store(TY *Addr, TY V, atomic::OrderingTy Ordering) { \ impl::atomicStore(Addr, V, Ordering); \ } #define ATOMIC_FP_OP(TY, STY, UTY) \ ATOMIC_FP_ONLY_OP(TY, STY, UTY) \ ATOMIC_COMMON_OP(TY) #define ATOMIC_INT_OP(TY) \ ATOMIC_INT_ONLY_OP(TY) \ ATOMIC_COMMON_OP(TY) // This needs to be kept in sync with the header. Also the reason we don't use // templates here. ATOMIC_INT_OP(int8_t) ATOMIC_INT_OP(int16_t) ATOMIC_INT_OP(int32_t) ATOMIC_INT_OP(int64_t) ATOMIC_INT_OP(uint8_t) ATOMIC_INT_OP(uint16_t) ATOMIC_INT_OP(uint32_t) ATOMIC_INT_OP(uint64_t) ATOMIC_FP_OP(float, int32_t, uint32_t) ATOMIC_FP_OP(double, int64_t, uint64_t) #undef ATOMIC_INT_ONLY_OP #undef ATOMIC_FP_ONLY_OP #undef ATOMIC_COMMON_OP #undef ATOMIC_INT_OP #undef ATOMIC_FP_OP uint32_t atomic::inc(uint32_t *Addr, uint32_t V, atomic::OrderingTy Ordering, atomic::MemScopeTy MemScope) { return impl::atomicInc(Addr, V, Ordering, MemScope); } void unsetCriticalLock(omp_lock_t *Lock) { impl::unsetLock(Lock); } void setCriticalLock(omp_lock_t *Lock) { impl::setLock(Lock); } extern "C" { void __kmpc_ordered(IdentTy *Loc, int32_t TId) {} void __kmpc_end_ordered(IdentTy *Loc, int32_t TId) {} int32_t __kmpc_cancel_barrier(IdentTy *Loc, int32_t TId) { __kmpc_barrier(Loc, TId); return 0; } void __kmpc_barrier(IdentTy *Loc, int32_t TId) { if (mapping::isMainThreadInGenericMode()) return __kmpc_flush(Loc); if (mapping::isSPMDMode()) return __kmpc_barrier_simple_spmd(Loc, TId); impl::namedBarrier(); } [[clang::noinline]] void __kmpc_barrier_simple_spmd(IdentTy *Loc, int32_t TId) { synchronize::threadsAligned(atomic::OrderingTy::seq_cst); } [[clang::noinline]] void __kmpc_barrier_simple_generic(IdentTy *Loc, int32_t TId) { synchronize::threads(atomic::OrderingTy::seq_cst); } int32_t __kmpc_master(IdentTy *Loc, int32_t TId) { return omp_get_thread_num() == 0; } void __kmpc_end_master(IdentTy *Loc, int32_t TId) {} int32_t __kmpc_masked(IdentTy *Loc, int32_t TId, int32_t Filter) { return omp_get_thread_num() == Filter; } void __kmpc_end_masked(IdentTy *Loc, int32_t TId) {} int32_t __kmpc_single(IdentTy *Loc, int32_t TId) { return __kmpc_master(Loc, TId); } void __kmpc_end_single(IdentTy *Loc, int32_t TId) { // The barrier is explicitly called. } void __kmpc_flush(IdentTy *Loc) { fence::kernel(atomic::seq_cst); } uint64_t __kmpc_warp_active_thread_mask(void) { return mapping::activemask(); } void __kmpc_syncwarp(uint64_t Mask) { synchronize::warp(Mask); } void __kmpc_critical(IdentTy *Loc, int32_t TId, CriticalNameTy *Name) { impl::setCriticalLock(reinterpret_cast(Name)); } void __kmpc_end_critical(IdentTy *Loc, int32_t TId, CriticalNameTy *Name) { impl::unsetCriticalLock(reinterpret_cast(Name)); } void omp_init_lock(omp_lock_t *Lock) { impl::initLock(Lock); } void omp_destroy_lock(omp_lock_t *Lock) { impl::destroyLock(Lock); } void omp_set_lock(omp_lock_t *Lock) { impl::setLock(Lock); } void omp_unset_lock(omp_lock_t *Lock) { impl::unsetLock(Lock); } int omp_test_lock(omp_lock_t *Lock) { return impl::testLock(Lock); } void ompx_sync_block(int Ordering) { impl::syncThreadsAligned(atomic::OrderingTy(Ordering)); } void ompx_sync_block_acq_rel() { impl::syncThreadsAligned(atomic::OrderingTy::acq_rel); } void ompx_sync_block_divergent(int Ordering) { impl::syncThreads(atomic::OrderingTy(Ordering)); } } // extern "C" #pragma omp end declare target