//===-- DWARFCompileUnit.cpp ------------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "DWARFCompileUnit.h" #include "lldb/Core/DumpDataExtractor.h" #include "lldb/Core/Mangled.h" #include "lldb/Core/Module.h" #include "lldb/Host/StringConvert.h" #include "lldb/Symbol/CompileUnit.h" #include "lldb/Symbol/LineTable.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Utility/Stream.h" #include "lldb/Utility/StreamString.h" #include "lldb/Utility/Timer.h" #include "DWARFDIECollection.h" #include "DWARFDebugAbbrev.h" #include "DWARFDebugAranges.h" #include "DWARFDebugInfo.h" #include "DWARFFormValue.h" #include "LogChannelDWARF.h" #include "NameToDIE.h" #include "SymbolFileDWARF.h" #include "SymbolFileDWARFDebugMap.h" #include "SymbolFileDWARFDwo.h" using namespace lldb; using namespace lldb_private; using namespace std; extern int g_verbose; DWARFCompileUnit::DWARFCompileUnit(SymbolFileDWARF *dwarf2Data) : m_dwarf2Data(dwarf2Data) {} DWARFUnitSP DWARFCompileUnit::Extract(SymbolFileDWARF *dwarf2Data, lldb::offset_t *offset_ptr) { // std::make_shared would require the ctor to be public. std::shared_ptr cu_sp(new DWARFCompileUnit(dwarf2Data)); // Out of memory? if (cu_sp.get() == NULL) return nullptr; const DWARFDataExtractor &debug_info = dwarf2Data->get_debug_info_data(); cu_sp->m_offset = *offset_ptr; if (debug_info.ValidOffset(*offset_ptr)) { dw_offset_t abbr_offset; const DWARFDebugAbbrev *abbr = dwarf2Data->DebugAbbrev(); cu_sp->m_length = debug_info.GetDWARFInitialLength(offset_ptr); cu_sp->m_is_dwarf64 = debug_info.IsDWARF64(); cu_sp->m_version = debug_info.GetU16(offset_ptr); abbr_offset = debug_info.GetDWARFOffset(offset_ptr); cu_sp->m_addr_size = debug_info.GetU8(offset_ptr); bool length_OK = debug_info.ValidOffset(cu_sp->GetNextCompileUnitOffset() - 1); bool version_OK = SymbolFileDWARF::SupportedVersion(cu_sp->m_version); bool abbr_offset_OK = dwarf2Data->get_debug_abbrev_data().ValidOffset(abbr_offset); bool addr_size_OK = (cu_sp->m_addr_size == 4) || (cu_sp->m_addr_size == 8); if (length_OK && version_OK && addr_size_OK && abbr_offset_OK && abbr != NULL) { cu_sp->m_abbrevs = abbr->GetAbbreviationDeclarationSet(abbr_offset); return cu_sp; } // reset the offset to where we tried to parse from if anything went wrong *offset_ptr = cu_sp->m_offset; } return nullptr; } void DWARFCompileUnit::ClearDIEs(bool keep_compile_unit_die) { if (m_die_array.size() > 1) { // std::vectors never get any smaller when resized to a smaller size, // or when clear() or erase() are called, the size will report that it // is smaller, but the memory allocated remains intact (call capacity() // to see this). So we need to create a temporary vector and swap the // contents which will cause just the internal pointers to be swapped // so that when "tmp_array" goes out of scope, it will destroy the // contents. // Save at least the compile unit DIE DWARFDebugInfoEntry::collection tmp_array; m_die_array.swap(tmp_array); if (keep_compile_unit_die) m_die_array.push_back(tmp_array.front()); } if (m_dwo_symbol_file) m_dwo_symbol_file->GetCompileUnit()->ClearDIEs(keep_compile_unit_die); } //---------------------------------------------------------------------- // ParseCompileUnitDIEsIfNeeded // // Parses a compile unit and indexes its DIEs if it hasn't already been // done. //---------------------------------------------------------------------- size_t DWARFCompileUnit::ExtractDIEsIfNeeded(bool cu_die_only) { const size_t initial_die_array_size = m_die_array.size(); if ((cu_die_only && initial_die_array_size > 0) || initial_die_array_size > 1) return 0; // Already parsed static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); Timer scoped_timer( func_cat, "%8.8x: DWARFCompileUnit::ExtractDIEsIfNeeded( cu_die_only = %i )", m_offset, cu_die_only); // Set the offset to that of the first DIE and calculate the start of the // next compilation unit header. lldb::offset_t offset = GetFirstDIEOffset(); lldb::offset_t next_cu_offset = GetNextCompileUnitOffset(); DWARFDebugInfoEntry die; // Keep a flat array of the DIE for binary lookup by DIE offset if (!cu_die_only) { Log *log( LogChannelDWARF::GetLogIfAny(DWARF_LOG_DEBUG_INFO | DWARF_LOG_LOOKUPS)); if (log) { m_dwarf2Data->GetObjectFile()->GetModule()->LogMessageVerboseBacktrace( log, "DWARFCompileUnit::ExtractDIEsIfNeeded () for compile unit at " ".debug_info[0x%8.8x]", GetOffset()); } } uint32_t depth = 0; // We are in our compile unit, parse starting at the offset // we were told to parse const DWARFDataExtractor &debug_info_data = m_dwarf2Data->get_debug_info_data(); std::vector die_index_stack; die_index_stack.reserve(32); die_index_stack.push_back(0); bool prev_die_had_children = false; DWARFFormValue::FixedFormSizes fixed_form_sizes = DWARFFormValue::GetFixedFormSizesForAddressSize(GetAddressByteSize(), m_is_dwarf64); while (offset < next_cu_offset && die.FastExtract(debug_info_data, this, fixed_form_sizes, &offset)) { // if (log) // log->Printf("0x%8.8x: %*.*s%s%s", // die.GetOffset(), // depth * 2, depth * 2, "", // DW_TAG_value_to_name (die.Tag()), // die.HasChildren() ? " *" : ""); const bool null_die = die.IsNULL(); if (depth == 0) { if (initial_die_array_size == 0) AddCompileUnitDIE(die); uint64_t base_addr = die.GetAttributeValueAsAddress( m_dwarf2Data, this, DW_AT_low_pc, LLDB_INVALID_ADDRESS); if (base_addr == LLDB_INVALID_ADDRESS) base_addr = die.GetAttributeValueAsAddress(m_dwarf2Data, this, DW_AT_entry_pc, 0); SetBaseAddress(base_addr); if (cu_die_only) return 1; } else { if (null_die) { if (prev_die_had_children) { // This will only happen if a DIE says is has children // but all it contains is a NULL tag. Since we are removing // the NULL DIEs from the list (saves up to 25% in C++ code), // we need a way to let the DIE know that it actually doesn't // have children. if (!m_die_array.empty()) m_die_array.back().SetEmptyChildren(true); } } else { die.SetParentIndex(m_die_array.size() - die_index_stack[depth - 1]); if (die_index_stack.back()) m_die_array[die_index_stack.back()].SetSiblingIndex( m_die_array.size() - die_index_stack.back()); // Only push the DIE if it isn't a NULL DIE m_die_array.push_back(die); } } if (null_die) { // NULL DIE. if (!die_index_stack.empty()) die_index_stack.pop_back(); if (depth > 0) --depth; if (depth == 0) break; // We are done with this compile unit! prev_die_had_children = false; } else { die_index_stack.back() = m_die_array.size() - 1; // Normal DIE const bool die_has_children = die.HasChildren(); if (die_has_children) { die_index_stack.push_back(0); ++depth; } prev_die_had_children = die_has_children; } } // Give a little bit of info if we encounter corrupt DWARF (our offset // should always terminate at or before the start of the next compilation // unit header). if (offset > next_cu_offset) { m_dwarf2Data->GetObjectFile()->GetModule()->ReportWarning( "DWARF compile unit extends beyond its bounds cu 0x%8.8x at " "0x%8.8" PRIx64 "\n", GetOffset(), offset); } // Since std::vector objects will double their size, we really need to // make a new array with the perfect size so we don't end up wasting // space. So here we copy and swap to make sure we don't have any extra // memory taken up. if (m_die_array.size() < m_die_array.capacity()) { DWARFDebugInfoEntry::collection exact_size_die_array(m_die_array.begin(), m_die_array.end()); exact_size_die_array.swap(m_die_array); } Log *log(LogChannelDWARF::GetLogIfAll(DWARF_LOG_DEBUG_INFO)); if (log && log->GetVerbose()) { StreamString strm; Dump(&strm); if (m_die_array.empty()) strm.Printf("error: no DIE for compile unit"); else m_die_array[0].Dump(m_dwarf2Data, this, strm, UINT32_MAX); log->PutString(strm.GetString()); } if (!m_dwo_symbol_file) return m_die_array.size(); DWARFUnit *dwo_cu = m_dwo_symbol_file->GetCompileUnit(); size_t dwo_die_count = dwo_cu->ExtractDIEsIfNeeded(cu_die_only); return m_die_array.size() + dwo_die_count - 1; // We have 2 CU die, but we want to count it only as one } void DWARFCompileUnit::AddCompileUnitDIE(DWARFDebugInfoEntry &die) { assert(m_die_array.empty() && "Compile unit DIE already added"); AddDIE(die); const DWARFDebugInfoEntry &cu_die = m_die_array.front(); std::unique_ptr dwo_symbol_file = m_dwarf2Data->GetDwoSymbolFileForCompileUnit(*this, cu_die); if (!dwo_symbol_file) return; DWARFUnit *dwo_cu = dwo_symbol_file->GetCompileUnit(); if (!dwo_cu) return; // Can't fetch the compile unit from the dwo file. DWARFDIE dwo_cu_die = dwo_cu->GetCompileUnitDIEOnly(); if (!dwo_cu_die.IsValid()) return; // Can't fetch the compile unit DIE from the dwo file. uint64_t main_dwo_id = cu_die.GetAttributeValueAsUnsigned( m_dwarf2Data, this, DW_AT_GNU_dwo_id, 0); uint64_t sub_dwo_id = dwo_cu_die.GetAttributeValueAsUnsigned(DW_AT_GNU_dwo_id, 0); if (main_dwo_id != sub_dwo_id) return; // The 2 dwo ID isn't match. Don't use the dwo file as it belongs to // a differectn compilation. m_dwo_symbol_file = std::move(dwo_symbol_file); dw_addr_t addr_base = cu_die.GetAttributeValueAsUnsigned( m_dwarf2Data, this, DW_AT_GNU_addr_base, 0); dw_addr_t ranges_base = cu_die.GetAttributeValueAsUnsigned( m_dwarf2Data, this, DW_AT_GNU_ranges_base, 0); dwo_cu->SetAddrBase(addr_base, ranges_base, m_offset); } dw_offset_t DWARFCompileUnit::GetAbbrevOffset() const { return m_abbrevs ? m_abbrevs->GetOffset() : DW_INVALID_OFFSET; } bool DWARFCompileUnit::Verify(Stream *s) const { const DWARFDataExtractor &debug_info = m_dwarf2Data->get_debug_info_data(); bool valid_offset = debug_info.ValidOffset(m_offset); bool length_OK = debug_info.ValidOffset(GetNextCompileUnitOffset() - 1); bool version_OK = SymbolFileDWARF::SupportedVersion(m_version); bool abbr_offset_OK = m_dwarf2Data->get_debug_abbrev_data().ValidOffset(GetAbbrevOffset()); bool addr_size_OK = ((m_addr_size == 4) || (m_addr_size == 8)); if (valid_offset && length_OK && version_OK && addr_size_OK && abbr_offset_OK) { return true; } else { s->Printf(" 0x%8.8x: ", m_offset); DumpDataExtractor(m_dwarf2Data->get_debug_info_data(), s, m_offset, lldb::eFormatHex, 1, Size(), 32, LLDB_INVALID_ADDRESS, 0, 0); s->EOL(); if (valid_offset) { if (!length_OK) s->Printf(" The length (0x%8.8x) for this compile unit is too " "large for the .debug_info provided.\n", m_length); if (!version_OK) s->Printf(" The 16 bit compile unit header version is not " "supported.\n"); if (!abbr_offset_OK) s->Printf(" The offset into the .debug_abbrev section (0x%8.8x) " "is not valid.\n", GetAbbrevOffset()); if (!addr_size_OK) s->Printf(" The address size is unsupported: 0x%2.2x\n", m_addr_size); } else s->Printf(" The start offset of the compile unit header in the " ".debug_info is invalid.\n"); } return false; } void DWARFCompileUnit::Dump(Stream *s) const { s->Printf("0x%8.8x: Compile Unit: length = 0x%8.8x, version = 0x%4.4x, " "abbr_offset = 0x%8.8x, addr_size = 0x%2.2x (next CU at " "{0x%8.8x})\n", m_offset, m_length, m_version, GetAbbrevOffset(), m_addr_size, GetNextCompileUnitOffset()); } lldb::user_id_t DWARFCompileUnit::GetID() const { dw_offset_t local_id = m_base_obj_offset != DW_INVALID_OFFSET ? m_base_obj_offset : m_offset; if (m_dwarf2Data) return DIERef(local_id, local_id).GetUID(m_dwarf2Data); else return local_id; } void DWARFCompileUnit::BuildAddressRangeTable( SymbolFileDWARF *dwarf2Data, DWARFDebugAranges *debug_aranges) { // This function is usually called if there in no .debug_aranges section // in order to produce a compile unit level set of address ranges that // is accurate. size_t num_debug_aranges = debug_aranges->GetNumRanges(); // First get the compile unit DIE only and check if it has a DW_AT_ranges const DWARFDebugInfoEntry *die = GetCompileUnitDIEPtrOnly(); const dw_offset_t cu_offset = GetOffset(); if (die) { DWARFRangeList ranges; const size_t num_ranges = die->GetAttributeAddressRanges(dwarf2Data, this, ranges, false); if (num_ranges > 0) { // This compile unit has DW_AT_ranges, assume this is correct if it // is present since clang no longer makes .debug_aranges by default // and it emits DW_AT_ranges for DW_TAG_compile_units. GCC also does // this with recent GCC builds. for (size_t i = 0; i < num_ranges; ++i) { const DWARFRangeList::Entry &range = ranges.GetEntryRef(i); debug_aranges->AppendRange(cu_offset, range.GetRangeBase(), range.GetRangeEnd()); } return; // We got all of our ranges from the DW_AT_ranges attribute } } // We don't have a DW_AT_ranges attribute, so we need to parse the DWARF // If the DIEs weren't parsed, then we don't want all dies for all compile // units // to stay loaded when they weren't needed. So we can end up parsing the DWARF // and then throwing them all away to keep memory usage down. const bool clear_dies = ExtractDIEsIfNeeded(false) > 1; die = DIEPtr(); if (die) die->BuildAddressRangeTable(dwarf2Data, this, debug_aranges); if (debug_aranges->GetNumRanges() == num_debug_aranges) { // We got nothing from the functions, maybe we have a line tables only // situation. Check the line tables and build the arange table from this. SymbolContext sc; sc.comp_unit = dwarf2Data->GetCompUnitForDWARFCompUnit(this); if (sc.comp_unit) { SymbolFileDWARFDebugMap *debug_map_sym_file = m_dwarf2Data->GetDebugMapSymfile(); if (debug_map_sym_file == NULL) { LineTable *line_table = sc.comp_unit->GetLineTable(); if (line_table) { LineTable::FileAddressRanges file_ranges; const bool append = true; const size_t num_ranges = line_table->GetContiguousFileAddressRanges(file_ranges, append); for (uint32_t idx = 0; idx < num_ranges; ++idx) { const LineTable::FileAddressRanges::Entry &range = file_ranges.GetEntryRef(idx); debug_aranges->AppendRange(cu_offset, range.GetRangeBase(), range.GetRangeEnd()); } } } else debug_map_sym_file->AddOSOARanges(dwarf2Data, debug_aranges); } } if (debug_aranges->GetNumRanges() == num_debug_aranges) { // We got nothing from the functions, maybe we have a line tables only // situation. Check the line tables and build the arange table from this. SymbolContext sc; sc.comp_unit = dwarf2Data->GetCompUnitForDWARFCompUnit(this); if (sc.comp_unit) { LineTable *line_table = sc.comp_unit->GetLineTable(); if (line_table) { LineTable::FileAddressRanges file_ranges; const bool append = true; const size_t num_ranges = line_table->GetContiguousFileAddressRanges(file_ranges, append); for (uint32_t idx = 0; idx < num_ranges; ++idx) { const LineTable::FileAddressRanges::Entry &range = file_ranges.GetEntryRef(idx); debug_aranges->AppendRange(GetOffset(), range.GetRangeBase(), range.GetRangeEnd()); } } } } // Keep memory down by clearing DIEs if this generate function // caused them to be parsed if (clear_dies) ClearDIEs(true); } const DWARFDebugAranges &DWARFCompileUnit::GetFunctionAranges() { if (m_func_aranges_ap.get() == NULL) { m_func_aranges_ap.reset(new DWARFDebugAranges()); Log *log(LogChannelDWARF::GetLogIfAll(DWARF_LOG_DEBUG_ARANGES)); if (log) { m_dwarf2Data->GetObjectFile()->GetModule()->LogMessage( log, "DWARFCompileUnit::GetFunctionAranges() for compile unit at " ".debug_info[0x%8.8x]", GetOffset()); } const DWARFDebugInfoEntry *die = DIEPtr(); if (die) die->BuildFunctionAddressRangeTable(m_dwarf2Data, this, m_func_aranges_ap.get()); if (m_dwo_symbol_file) { DWARFUnit *dwo_cu = m_dwo_symbol_file->GetCompileUnit(); const DWARFDebugInfoEntry *dwo_die = dwo_cu->DIEPtr(); if (dwo_die) dwo_die->BuildFunctionAddressRangeTable(m_dwo_symbol_file.get(), dwo_cu, m_func_aranges_ap.get()); } const bool minimize = false; m_func_aranges_ap->Sort(minimize); } return *m_func_aranges_ap.get(); } DWARFDIE DWARFCompileUnit::LookupAddress(const dw_addr_t address) { if (DIE()) { const DWARFDebugAranges &func_aranges = GetFunctionAranges(); // Re-check the aranges auto pointer contents in case it was created above if (!func_aranges.IsEmpty()) return GetDIE(func_aranges.FindAddress(address)); } return DWARFDIE(); } size_t DWARFCompileUnit::AppendDIEsWithTag(const dw_tag_t tag, DWARFDIECollection &dies, uint32_t depth) const { size_t old_size = dies.Size(); DWARFDebugInfoEntry::const_iterator pos; DWARFDebugInfoEntry::const_iterator end = m_die_array.end(); for (pos = m_die_array.begin(); pos != end; ++pos) { if (pos->Tag() == tag) dies.Append(DWARFDIE(this, &(*pos))); } // Return the number of DIEs added to the collection return dies.Size() - old_size; } // void // DWARFCompileUnit::AddGlobalDIEByIndex (uint32_t die_idx) //{ // m_global_die_indexes.push_back (die_idx); //} // // // void // DWARFCompileUnit::AddGlobal (const DWARFDebugInfoEntry* die) //{ // // Indexes to all file level global and static variables // m_global_die_indexes; // // if (m_die_array.empty()) // return; // // const DWARFDebugInfoEntry* first_die = &m_die_array[0]; // const DWARFDebugInfoEntry* end = first_die + m_die_array.size(); // if (first_die <= die && die < end) // m_global_die_indexes.push_back (die - first_die); //} void DWARFCompileUnit::ParseProducerInfo() { m_producer_version_major = UINT32_MAX; m_producer_version_minor = UINT32_MAX; m_producer_version_update = UINT32_MAX; const DWARFDebugInfoEntry *die = GetCompileUnitDIEPtrOnly(); if (die) { const char *producer_cstr = die->GetAttributeValueAsString( m_dwarf2Data, this, DW_AT_producer, NULL); if (producer_cstr) { RegularExpression llvm_gcc_regex( llvm::StringRef("^4\\.[012]\\.[01] \\(Based on Apple " "Inc\\. build [0-9]+\\) \\(LLVM build " "[\\.0-9]+\\)$")); if (llvm_gcc_regex.Execute(llvm::StringRef(producer_cstr))) { m_producer = eProducerLLVMGCC; } else if (strstr(producer_cstr, "clang")) { static RegularExpression g_clang_version_regex( llvm::StringRef("clang-([0-9]+)\\.([0-9]+)\\.([0-9]+)")); RegularExpression::Match regex_match(3); if (g_clang_version_regex.Execute(llvm::StringRef(producer_cstr), ®ex_match)) { std::string str; if (regex_match.GetMatchAtIndex(producer_cstr, 1, str)) m_producer_version_major = StringConvert::ToUInt32(str.c_str(), UINT32_MAX, 10); if (regex_match.GetMatchAtIndex(producer_cstr, 2, str)) m_producer_version_minor = StringConvert::ToUInt32(str.c_str(), UINT32_MAX, 10); if (regex_match.GetMatchAtIndex(producer_cstr, 3, str)) m_producer_version_update = StringConvert::ToUInt32(str.c_str(), UINT32_MAX, 10); } m_producer = eProducerClang; } else if (strstr(producer_cstr, "GNU")) m_producer = eProducerGCC; } } if (m_producer == eProducerInvalid) m_producer = eProcucerOther; } DWARFProducer DWARFCompileUnit::GetProducer() { if (m_producer == eProducerInvalid) ParseProducerInfo(); return m_producer; } uint32_t DWARFCompileUnit::GetProducerVersionMajor() { if (m_producer_version_major == 0) ParseProducerInfo(); return m_producer_version_major; } uint32_t DWARFCompileUnit::GetProducerVersionMinor() { if (m_producer_version_minor == 0) ParseProducerInfo(); return m_producer_version_minor; } uint32_t DWARFCompileUnit::GetProducerVersionUpdate() { if (m_producer_version_update == 0) ParseProducerInfo(); return m_producer_version_update; } LanguageType DWARFCompileUnit::GetLanguageType() { if (m_language_type != eLanguageTypeUnknown) return m_language_type; const DWARFDebugInfoEntry *die = GetCompileUnitDIEPtrOnly(); if (die) m_language_type = LanguageTypeFromDWARF(die->GetAttributeValueAsUnsigned( m_dwarf2Data, this, DW_AT_language, 0)); return m_language_type; } bool DWARFCompileUnit::GetIsOptimized() { if (m_is_optimized == eLazyBoolCalculate) { const DWARFDebugInfoEntry *die = GetCompileUnitDIEPtrOnly(); if (die) { m_is_optimized = eLazyBoolNo; if (die->GetAttributeValueAsUnsigned(m_dwarf2Data, this, DW_AT_APPLE_optimized, 0) == 1) { m_is_optimized = eLazyBoolYes; } } } if (m_is_optimized == eLazyBoolYes) { return true; } else { return false; } } TypeSystem *DWARFCompileUnit::GetTypeSystem() { if (m_dwarf2Data) return m_dwarf2Data->GetTypeSystemForLanguage(GetLanguageType()); else return nullptr; } void DWARFCompileUnit::SetUserData(void *d) { m_user_data = d; if (m_dwo_symbol_file) m_dwo_symbol_file->GetCompileUnit()->SetUserData(d); } void DWARFCompileUnit::SetAddrBase(dw_addr_t addr_base, dw_addr_t ranges_base, dw_offset_t base_obj_offset) { m_addr_base = addr_base; m_ranges_base = ranges_base; m_base_obj_offset = base_obj_offset; }