//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // C Includes // C++ Includes #include // Other libraries and framework includes // Project includes #include "lldb/Symbol/DWARFCallFrameInfo.h" #include "lldb/Core/ArchSpec.h" #include "lldb/Core/Module.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/RegisterContext.h" #include "lldb/Core/Section.h" #include "lldb/Target/Thread.h" using namespace lldb; using namespace lldb_private; static void DumpRegisterName (Stream *s, Thread *thread, const ArchSpec *arch, uint32_t reg_kind, uint32_t reg_num) { const char *reg_name = NULL; RegisterContext *reg_ctx = NULL; if (thread) { reg_ctx = thread->GetRegisterContext(); if (reg_ctx) reg_name = reg_ctx->GetRegisterName (reg_ctx->ConvertRegisterKindToRegisterNumber (reg_kind, reg_num)); } if (reg_name == NULL && arch != NULL) { switch (reg_kind) { case eRegisterKindDWARF: reg_name = arch->GetRegisterName(reg_num, eRegisterKindDWARF); break; case eRegisterKindGCC: reg_name = arch->GetRegisterName(reg_num, eRegisterKindGCC); break; default: break; } } if (reg_name) s->PutCString(reg_name); else { const char *reg_kind_name = NULL; switch (reg_kind) { case eRegisterKindDWARF: reg_kind_name = "dwarf-reg"; break; case eRegisterKindGCC: reg_kind_name = "compiler-reg"; break; case eRegisterKindGeneric: reg_kind_name = "generic-reg"; break; default: break; } if (reg_kind_name) s->Printf("%s(%u)", reg_kind_name, reg_num); else s->Printf("reg(%d.%u)", reg_kind, reg_num); } } #pragma mark DWARFCallFrameInfo::RegisterLocation DWARFCallFrameInfo::RegisterLocation::RegisterLocation() : m_type(isSame) { } bool DWARFCallFrameInfo::RegisterLocation::operator == (const DWARFCallFrameInfo::RegisterLocation& rhs) const { if (m_type != rhs.m_type) return false; switch (m_type) { case unspecified: case isUndefined: case isSame: return true; case atCFAPlusOffset: return m_location.offset == rhs.m_location.offset; case isCFAPlusOffset: return m_location.offset == rhs.m_location.offset; case inOtherRegister: return m_location.reg_num == rhs.m_location.reg_num; default: break; } return false; } void DWARFCallFrameInfo::RegisterLocation::SetUnspecified() { m_type = unspecified; } void DWARFCallFrameInfo::RegisterLocation::SetUndefined() { m_type = isUndefined; } void DWARFCallFrameInfo::RegisterLocation::SetSame() { m_type = isSame; } void DWARFCallFrameInfo::RegisterLocation::SetAtCFAPlusOffset(int64_t offset) { m_type = atCFAPlusOffset; m_location.offset = offset; } void DWARFCallFrameInfo::RegisterLocation::SetIsCFAPlusOffset(int64_t offset) { m_type = isCFAPlusOffset; m_location.offset = offset; } void DWARFCallFrameInfo::RegisterLocation::SetInRegister (uint32_t reg_num) { m_type = inOtherRegister; m_location.reg_num = reg_num; } void DWARFCallFrameInfo::RegisterLocation::SetAtDWARFExpression(const uint8_t *opcodes, uint32_t len) { m_type = atDWARFExpression; m_location.expr.opcodes = opcodes; m_location.expr.length = len; } void DWARFCallFrameInfo::RegisterLocation::SetIsDWARFExpression(const uint8_t *opcodes, uint32_t len) { m_type = isDWARFExpression; m_location.expr.opcodes = opcodes; m_location.expr.length = len; } void DWARFCallFrameInfo::RegisterLocation::Dump(Stream *s, const DWARFCallFrameInfo &cfi, Thread *thread, const Row *row, uint32_t reg_num) const { const ArchSpec *arch = cfi.GetArchitecture(); const uint32_t reg_kind = cfi.GetRegisterKind(); DumpRegisterName (s, thread, arch, reg_kind, reg_num); s->PutChar('='); switch (m_type) { case unspecified: s->PutChar('?'); break; case isUndefined: s->PutCString("undefined"); break; case isSame: s->PutCString("same"); break; case atCFAPlusOffset: s->PutChar('['); // Fall through to isCFAPlusOffset... case isCFAPlusOffset: { DumpRegisterName (s, thread, arch, reg_kind, row->GetCFARegister()); int32_t offset = row->GetCFAOffset() + m_location.offset; if (offset != 0) s->Printf("%-+d", offset); if (m_type == atCFAPlusOffset) s->PutChar(']'); } break; case inOtherRegister: DumpRegisterName (s, thread, arch, reg_kind, m_location.reg_num); break; case atDWARFExpression: s->PutCString("[EXPR] "); break; case isDWARFExpression: s->PutCString("EXPR "); break; } } #pragma mark DWARFCallFrameInfo::Row DWARFCallFrameInfo::Row::Row() : m_offset(0), m_cfa_reg_num(0), m_cfa_offset(0), m_register_locations() { } DWARFCallFrameInfo::Row::~Row() { } void DWARFCallFrameInfo::Row::Clear() { m_register_locations.clear(); } bool DWARFCallFrameInfo::Row::GetRegisterInfo (uint32_t reg_num, DWARFCallFrameInfo::RegisterLocation& register_location) const { collection::const_iterator pos = m_register_locations.find(reg_num); if (pos != m_register_locations.end()) { register_location = pos->second; return true; } return false; } void DWARFCallFrameInfo::Row::SetRegisterInfo (uint32_t reg_num, const RegisterLocation& register_location) { m_register_locations[reg_num] = register_location; } void DWARFCallFrameInfo::Row::Dump(Stream* s, const DWARFCallFrameInfo &cfi, Thread *thread, lldb::addr_t base_addr) const { const ArchSpec *arch = cfi.GetArchitecture(); const uint32_t reg_kind = cfi.GetRegisterKind(); collection::const_iterator pos, end = m_register_locations.end(); s->Indent(); s->Printf("0x%16.16llx: CFA=", m_offset + base_addr); DumpRegisterName(s, thread, arch, reg_kind, m_cfa_reg_num); if (m_cfa_offset != 0) s->Printf("%-+lld", m_cfa_offset); for (pos = m_register_locations.begin(); pos != end; ++pos) { s->PutChar(' '); pos->second.Dump(s, cfi, thread, this, pos->first); } s->EOL(); } #pragma mark DWARFCallFrameInfo::FDE DWARFCallFrameInfo::FDE::FDE (dw_offset_t offset, const AddressRange &range) : m_fde_offset (offset), m_range (range), m_row_list () { } DWARFCallFrameInfo::FDE::~FDE() { } void DWARFCallFrameInfo::FDE::AppendRow (const Row &row) { if (m_row_list.empty() || m_row_list.back().GetOffset() != row.GetOffset()) m_row_list.push_back(row); else m_row_list.back() = row; } void DWARFCallFrameInfo::FDE::Dump (Stream *s, const DWARFCallFrameInfo &cfi, Thread* thread) const { s->Indent(); s->Printf("FDE{0x%8.8x} ", m_fde_offset); m_range.Dump(s, NULL, Address::DumpStyleFileAddress); lldb::addr_t fde_base_addr = m_range.GetBaseAddress().GetFileAddress(); s->EOL(); s->IndentMore(); collection::const_iterator pos, end = m_row_list.end(); for (pos = m_row_list.begin(); pos != end; ++pos) { pos->Dump(s, cfi, thread, fde_base_addr); } s->IndentLess(); } const AddressRange & DWARFCallFrameInfo::FDE::GetAddressRange() const { return m_range; } bool DWARFCallFrameInfo::FDE::IsValidRowIndex (uint32_t idx) const { return idx < m_row_list.size(); } const DWARFCallFrameInfo::Row& DWARFCallFrameInfo::FDE::GetRowAtIndex (uint32_t idx) { // You must call IsValidRowIndex(idx) first before calling this!!! return m_row_list[idx]; } #pragma mark DWARFCallFrameInfo::FDEInfo DWARFCallFrameInfo::FDEInfo::FDEInfo () : fde_offset (0), fde_sp() { } DWARFCallFrameInfo::FDEInfo::FDEInfo (off_t offset) : fde_offset(offset), fde_sp() { } #pragma mark DWARFCallFrameInfo::CIE DWARFCallFrameInfo::CIE::CIE(dw_offset_t offset) : cie_offset (offset), version (0), augmentation(), code_align (0), data_align (0), return_addr_reg_num (0), inst_offset (0), inst_length (0), ptr_encoding (DW_EH_PE_absptr) { } DWARFCallFrameInfo::CIE::~CIE() { } void DWARFCallFrameInfo::CIE::Dump(Stream *s, Thread* thread, const ArchSpec *arch, uint32_t reg_kind) const { s->Indent(); s->Printf("CIE{0x%8.8x} version=%u, code_align=%u, data_align=%d, return_addr_reg=", cie_offset, version, code_align, data_align); DumpRegisterName(s, thread, arch, reg_kind, return_addr_reg_num); s->Printf(", instr_offset=0x%8.8x, instr_length=%u, ptr_encoding=0x%02x\n", inst_offset, inst_length, ptr_encoding); } #pragma mark DWARFCallFrameInfo::CIE DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile *objfile, Section *section, uint32_t reg_kind) : m_objfile (objfile), m_section (section), m_reg_kind (reg_kind), // The flavor of registers that the CFI data uses (One of the defines that starts with "LLDB_REGKIND_") m_cfi_data (), m_cie_map (), m_fde_map () { if (objfile && section) { section->ReadSectionDataFromObjectFile (objfile, m_cfi_data); } } DWARFCallFrameInfo::~DWARFCallFrameInfo() { } bool DWARFCallFrameInfo::IsEHFrame() const { return (m_reg_kind == eRegisterKindGCC); } const ArchSpec * DWARFCallFrameInfo::GetArchitecture() const { if (m_objfile && m_objfile->GetModule()) return &m_objfile->GetModule()->GetArchitecture(); return NULL; } uint32_t DWARFCallFrameInfo::GetRegisterKind () const { return m_reg_kind; } void DWARFCallFrameInfo::SetRegisterKind (uint32_t reg_kind) { m_reg_kind = reg_kind; } const DWARFCallFrameInfo::CIE* DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) { Index (); cie_map_t::iterator pos = m_cie_map.find(cie_offset); if (pos != m_cie_map.end()) { // Parse and cache the CIE if (pos->second.get() == NULL) pos->second = ParseCIE (cie_offset); return pos->second.get(); } return NULL; } DWARFCallFrameInfo::CIE::shared_ptr DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset) { CIE::shared_ptr cie_sp(new CIE(cie_offset)); const bool for_eh_frame = IsEHFrame(); dw_offset_t offset = cie_offset; const uint32_t length = m_cfi_data.GetU32(&offset); const dw_offset_t cie_id = m_cfi_data.GetU32(&offset); const dw_offset_t end_offset = cie_offset + length + 4; if (length > 0 && (!for_eh_frame && cie_id == 0xfffffffful) || (for_eh_frame && cie_id == 0ul)) { size_t i; // cie.offset = cie_offset; // cie.length = length; // cie.cieID = cieID; cie_sp->ptr_encoding = DW_EH_PE_absptr; cie_sp->version = m_cfi_data.GetU8(&offset); for (i=0; iaugmentation[i] = m_cfi_data.GetU8(&offset); if (cie_sp->augmentation[i] == '\0') { // Zero out remaining bytes in augmentation string for (size_t j = i+1; jaugmentation[j] = '\0'; break; } } if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0') { fprintf(stderr, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE); return cie_sp; } cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset); cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset); cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset); if (cie_sp->augmentation[0]) { // Get the length of the eh_frame augmentation data // which starts with a ULEB128 length in bytes const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset); const size_t aug_data_end = offset + aug_data_len; const size_t aug_str_len = strlen(cie_sp->augmentation); // A 'z' may be present as the first character of the string. // If present, the Augmentation Data field shall be present. // The contents of the Augmentation Data shall be intepreted // according to other characters in the Augmentation String. if (cie_sp->augmentation[0] == 'z') { // Extract the Augmentation Data size_t aug_str_idx = 0; for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) { char aug = cie_sp->augmentation[aug_str_idx]; switch (aug) { case 'L': // Indicates the presence of one argument in the // Augmentation Data of the CIE, and a corresponding // argument in the Augmentation Data of the FDE. The // argument in the Augmentation Data of the CIE is // 1-byte and represents the pointer encoding used // for the argument in the Augmentation Data of the // FDE, which is the address of a language-specific // data area (LSDA). The size of the LSDA pointer is // specified by the pointer encoding used. m_cfi_data.GetU8(&offset); break; case 'P': // Indicates the presence of two arguments in the // Augmentation Data of the cie_sp-> The first argument // is 1-byte and represents the pointer encoding // used for the second argument, which is the // address of a personality routine handler. The // size of the personality routine pointer is // specified by the pointer encoding used. { uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset); m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS); } break; case 'R': // A 'R' may be present at any position after the // first character of the string. The Augmentation // Data shall include a 1 byte argument that // represents the pointer encoding for the address // pointers used in the FDE. cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset); break; } } } else if (strcmp(cie_sp->augmentation, "eh") == 0) { // If the Augmentation string has the value "eh", then // the EH Data field shall be present } // Set the offset to be the end of the augmentation data just in case // we didn't understand any of the data. offset = (uint32_t)aug_data_end; } if (end_offset > offset) { cie_sp->inst_offset = offset; cie_sp->inst_length = end_offset - offset; } } return cie_sp; } DWARFCallFrameInfo::FDE::shared_ptr DWARFCallFrameInfo::ParseFDE(const dw_offset_t fde_offset) { const bool for_eh_frame = IsEHFrame(); FDE::shared_ptr fde_sp; dw_offset_t offset = fde_offset; const uint32_t length = m_cfi_data.GetU32(&offset); dw_offset_t cie_offset = m_cfi_data.GetU32(&offset); const dw_offset_t end_offset = fde_offset + length + 4; // Translate the CIE_id from the eh_frame format, which // is relative to the FDE offset, into a __eh_frame section // offset if (for_eh_frame) cie_offset = offset - (cie_offset + 4); const CIE* cie = GetCIE(cie_offset); if (cie) { const lldb::addr_t pc_rel_addr = m_section->GetFileAddress(); const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS; const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS; lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr); lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr); if (cie->augmentation[0] == 'z') { uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset); offset += aug_data_len; } AddressRange fde_range (range_base, range_len, m_objfile->GetSectionList ()); fde_sp.reset(new FDE(fde_offset, fde_range)); if (offset < end_offset) { dw_offset_t fde_instr_offset = offset; uint32_t fde_instr_length = end_offset - offset; if (cie->inst_length > 0) ParseInstructions(cie, fde_sp.get(), cie->inst_offset, cie->inst_length); ParseInstructions(cie, fde_sp.get(), fde_instr_offset, fde_instr_length); } } return fde_sp; } const DWARFCallFrameInfo::FDE * DWARFCallFrameInfo::FindFDE(const Address &addr) { Index (); VMRange find_range(addr.GetFileAddress(), 0); fde_map_t::iterator pos = m_fde_map.lower_bound (find_range); fde_map_t::iterator end = m_fde_map.end(); if (pos != end) { if (pos->first.Contains(find_range.GetBaseAddress())) { // Parse and cache the FDE if we already haven't if (pos->second.fde_sp.get() == NULL) pos->second.fde_sp = ParseFDE(pos->second.fde_offset); return pos->second.fde_sp.get(); } } return NULL; } void DWARFCallFrameInfo::Index () { if (m_flags.IsClear(eFlagParsedIndex)) { m_flags.Set (eFlagParsedIndex); const bool for_eh_frame = IsEHFrame(); CIE::shared_ptr empty_cie_sp; dw_offset_t offset = 0; // Parse all of the CIEs first since we will need them to be able to // properly parse the FDE addresses due to them possibly having // GNU pointer encodings in their augmentations... while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) { const dw_offset_t curr_offset = offset; const uint32_t length = m_cfi_data.GetU32(&offset); const dw_offset_t next_offset = offset + length; const dw_offset_t cie_id = m_cfi_data.GetU32(&offset); bool is_cie = for_eh_frame ? cie_id == 0 : cie_id == UINT32_MAX; if (is_cie) m_cie_map[curr_offset]= ParseCIE(curr_offset); offset = next_offset; } // Now go back through and index all FDEs offset = 0; const lldb::addr_t pc_rel_addr = m_section->GetFileAddress(); const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS; const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS; while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) { const dw_offset_t curr_offset = offset; const uint32_t length = m_cfi_data.GetU32(&offset); const dw_offset_t next_offset = offset + length; const dw_offset_t cie_id = m_cfi_data.GetU32(&offset); bool is_fde = for_eh_frame ? cie_id != 0 : cie_id != UINT32_MAX; if (is_fde) { dw_offset_t cie_offset; if (for_eh_frame) cie_offset = offset - (cie_id + 4); else cie_offset = cie_id; const CIE* cie = GetCIE(cie_offset); assert(cie); lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr); lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr); m_fde_map[VMRange(addr, addr + length)] = FDEInfo(curr_offset); } offset = next_offset; } } } //---------------------------------------------------------------------- // Parse instructions for a FDE. The initial instruction for the CIE // are parsed first, then the instructions for the FDE are parsed //---------------------------------------------------------------------- void DWARFCallFrameInfo::ParseInstructions(const CIE *cie, FDE *fde, dw_offset_t instr_offset, uint32_t instr_length) { if (cie != NULL && fde == NULL) return; uint32_t reg_num = 0; int32_t op_offset = 0; uint32_t tmp_uval32; uint32_t code_align = cie->code_align; int32_t data_align = cie->data_align; typedef std::list RowStack; RowStack row_stack; Row row; if (fde->IsValidRowIndex(0)) row = fde->GetRowAtIndex(0); dw_offset_t offset = instr_offset; const dw_offset_t end_offset = instr_offset + instr_length; RegisterLocation reg_location; while (m_cfi_data.ValidOffset(offset) && offset < end_offset) { uint8_t inst = m_cfi_data.GetU8(&offset); uint8_t primary_opcode = inst & 0xC0; uint8_t extended_opcode = inst & 0x3F; if (primary_opcode) { switch (primary_opcode) { case DW_CFA_advance_loc : // (Row Creation Instruction) { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta // takes a single argument that represents a constant delta. The // required action is to create a new table row with a location // value that is computed by taking the current entry's location // value and adding (delta * code_align). All other // values in the new row are initially identical to the current row. fde->AppendRow(row); row.SlideOffset(extended_opcode * code_align); } break; case DW_CFA_offset : { // 0x80 - high 2 bits are 0x2, lower 6 bits are register // takes two arguments: an unsigned LEB128 constant representing a // factored offset and a register number. The required action is to // change the rule for the register indicated by the register number // to be an offset(N) rule with a value of // (N = factored offset * data_align). reg_num = extended_opcode; op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align; reg_location.SetAtCFAPlusOffset(op_offset); row.SetRegisterInfo (reg_num, reg_location); } break; case DW_CFA_restore : { // 0xC0 - high 2 bits are 0x3, lower 6 bits are register // takes a single argument that represents a register number. The // required action is to change the rule for the indicated register // to the rule assigned it by the initial_instructions in the CIE. reg_num = extended_opcode; // We only keep enough register locations around to // unwind what is in our thread, and these are organized // by the register index in that state, so we need to convert our // GCC register number from the EH frame info, to a registe index if (fde->IsValidRowIndex(0) && fde->GetRowAtIndex(0).GetRegisterInfo(reg_num, reg_location)) row.SetRegisterInfo (reg_num, reg_location); } break; } } else { switch (extended_opcode) { case DW_CFA_nop : // 0x0 break; case DW_CFA_set_loc : // 0x1 (Row Creation Instruction) { // DW_CFA_set_loc takes a single argument that represents an address. // The required action is to create a new table row using the // specified address as the location. All other values in the new row // are initially identical to the current row. The new location value // should always be greater than the current one. fde->AppendRow(row); row.SetOffset(m_cfi_data.GetPointer(&offset) - fde->GetAddressRange().GetBaseAddress().GetFileAddress()); } break; case DW_CFA_advance_loc1 : // 0x2 (Row Creation Instruction) { // takes a single uword argument that represents a constant delta. // This instruction is identical to DW_CFA_advance_loc except for the // encoding and size of the delta argument. fde->AppendRow(row); row.SlideOffset (m_cfi_data.GetU8(&offset) * code_align); } break; case DW_CFA_advance_loc2 : // 0x3 (Row Creation Instruction) { // takes a single uword argument that represents a constant delta. // This instruction is identical to DW_CFA_advance_loc except for the // encoding and size of the delta argument. fde->AppendRow(row); row.SlideOffset (m_cfi_data.GetU16(&offset) * code_align); } break; case DW_CFA_advance_loc4 : // 0x4 (Row Creation Instruction) { // takes a single uword argument that represents a constant delta. // This instruction is identical to DW_CFA_advance_loc except for the // encoding and size of the delta argument. fde->AppendRow(row); row.SlideOffset (m_cfi_data.GetU32(&offset) * code_align); } break; case DW_CFA_offset_extended : // 0x5 { // takes two unsigned LEB128 arguments representing a register number // and a factored offset. This instruction is identical to DW_CFA_offset // except for the encoding and size of the register argument. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align; reg_location.SetAtCFAPlusOffset(op_offset); row.SetRegisterInfo (reg_num, reg_location); } break; case DW_CFA_restore_extended : // 0x6 { // takes a single unsigned LEB128 argument that represents a register // number. This instruction is identical to DW_CFA_restore except for // the encoding and size of the register argument. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); if (fde->IsValidRowIndex(0) && fde->GetRowAtIndex(0).GetRegisterInfo(reg_num, reg_location)) row.SetRegisterInfo (reg_num, reg_location); } break; case DW_CFA_undefined : // 0x7 { // takes a single unsigned LEB128 argument that represents a register // number. The required action is to set the rule for the specified // register to undefined. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); reg_location.SetUndefined(); row.SetRegisterInfo (reg_num, reg_location); } break; case DW_CFA_same_value : // 0x8 { // takes a single unsigned LEB128 argument that represents a register // number. The required action is to set the rule for the specified // register to same value. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); reg_location.SetSame(); row.SetRegisterInfo (reg_num, reg_location); } break; case DW_CFA_register : // 0x9 { // takes two unsigned LEB128 arguments representing register numbers. // The required action is to set the rule for the first register to be // the second register. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); reg_location.SetInRegister(other_reg_num); row.SetRegisterInfo (reg_num, reg_location); } break; case DW_CFA_remember_state : // 0xA // These instructions define a stack of information. Encountering the // DW_CFA_remember_state instruction means to save the rules for every // register on the current row on the stack. Encountering the // DW_CFA_restore_state instruction means to pop the set of rules off // the stack and place them in the current row. (This operation is // useful for compilers that move epilogue code into the body of a // function.) row_stack.push_back(row); break; case DW_CFA_restore_state : // 0xB // These instructions define a stack of information. Encountering the // DW_CFA_remember_state instruction means to save the rules for every // register on the current row on the stack. Encountering the // DW_CFA_restore_state instruction means to pop the set of rules off // the stack and place them in the current row. (This operation is // useful for compilers that move epilogue code into the body of a // function.) { row = row_stack.back(); row_stack.pop_back(); } break; case DW_CFA_def_cfa : // 0xC (CFA Definition Instruction) { // Takes two unsigned LEB128 operands representing a register // number and a (non-factored) offset. The required action // is to define the current CFA rule to use the provided // register and offset. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); op_offset = (int32_t)m_cfi_data.GetULEB128(&offset); row.SetCFARegister (reg_num); row.SetCFAOffset (op_offset); } break; case DW_CFA_def_cfa_register : // 0xD (CFA Definition Instruction) { // takes a single unsigned LEB128 argument representing a register // number. The required action is to define the current CFA rule to // use the provided register (but to keep the old offset). reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); row.SetCFARegister (reg_num); } break; case DW_CFA_def_cfa_offset : // 0xE (CFA Definition Instruction) { // Takes a single unsigned LEB128 operand representing a // (non-factored) offset. The required action is to define // the current CFA rule to use the provided offset (but // to keep the old register). op_offset = (int32_t)m_cfi_data.GetULEB128(&offset); row.SetCFAOffset (op_offset); } break; case DW_CFA_def_cfa_expression : // 0xF (CFA Definition Instruction) { size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset); offset += (uint32_t)block_len; } break; case DW_CFA_expression : // 0x10 { // Takes two operands: an unsigned LEB128 value representing // a register number, and a DW_FORM_block value representing a DWARF // expression. The required action is to change the rule for the // register indicated by the register number to be an expression(E) // rule where E is the DWARF expression. That is, the DWARF // expression computes the address. The value of the CFA is // pushed on the DWARF evaluation stack prior to execution of // the DWARF expression. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset); const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len); reg_location.SetAtDWARFExpression(block_data, block_len); row.SetRegisterInfo (reg_num, reg_location); } break; case DW_CFA_offset_extended_sf : // 0x11 { // takes two operands: an unsigned LEB128 value representing a // register number and a signed LEB128 factored offset. This // instruction is identical to DW_CFA_offset_extended except //that the second operand is signed and factored. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align; reg_location.SetAtCFAPlusOffset(op_offset); row.SetRegisterInfo (reg_num, reg_location); } break; case DW_CFA_def_cfa_sf : // 0x12 (CFA Definition Instruction) { // Takes two operands: an unsigned LEB128 value representing // a register number and a signed LEB128 factored offset. // This instruction is identical to DW_CFA_def_cfa except // that the second operand is signed and factored. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align; row.SetCFARegister (reg_num); row.SetCFAOffset (op_offset); } break; case DW_CFA_def_cfa_offset_sf : // 0x13 (CFA Definition Instruction) { // takes a signed LEB128 operand representing a factored // offset. This instruction is identical to DW_CFA_def_cfa_offset // except that the operand is signed and factored. op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align; row.SetCFAOffset (op_offset); } break; case DW_CFA_val_expression : // 0x16 { // takes two operands: an unsigned LEB128 value representing a register // number, and a DW_FORM_block value representing a DWARF expression. // The required action is to change the rule for the register indicated // by the register number to be a val_expression(E) rule where E is the // DWARF expression. That is, the DWARF expression computes the value of // the given register. The value of the CFA is pushed on the DWARF // evaluation stack prior to execution of the DWARF expression. reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset); uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset); const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len); //#if defined(__i386__) || defined(__x86_64__) // // The EH frame info for EIP and RIP contains code that looks for traps to // // be a specific type and increments the PC. // // For i386: // // DW_CFA_val_expression where: // // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34), // // DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref, // // DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, // // DW_OP_and, DW_OP_plus // // This basically does a: // // eip = ucontenxt.mcontext32->gpr.eip; // // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4) // // eip++; // // // // For x86_64: // // DW_CFA_val_expression where: // // rip = DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref, // // DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3, // // DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus // // This basically does a: // // rip = ucontenxt.mcontext64->gpr.rip; // // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4) // // rip++; // // The trap comparisons and increments are not needed as it hoses up the unwound PC which // // is expected to point at least past the instruction that causes the fault/trap. So we // // take it out by trimming the expression right at the first "DW_OP_swap" opcodes // if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num) // { // if (thread->Is64Bit()) // { // if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst) // block_len = 8; // } // else // { // if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst) // block_len = 7; // } // } //#endif reg_location.SetIsDWARFExpression(block_data, block_len); row.SetRegisterInfo (reg_num, reg_location); } break; case DW_CFA_val_offset : // 0x14 case DW_CFA_val_offset_sf : // 0x15 default: tmp_uval32 = extended_opcode; break; } } } fde->AppendRow(row); } void DWARFCallFrameInfo::ParseAll() { Index(); fde_map_t::iterator pos, end = m_fde_map.end(); for (pos = m_fde_map.begin(); pos != end; ++ pos) { if (pos->second.fde_sp.get() == NULL) pos->second.fde_sp = ParseFDE(pos->second.fde_offset); } } //bool //DWARFCallFrameInfo::UnwindRegisterAtIndex //( // const uint32_t reg_idx, // const Thread* currState, // const DWARFCallFrameInfo::Row* row, // mapped_memory_t * memCache, // Thread* unwindState //) //{ // bool get_reg_success = false; // // const RegLocation* regLocation = row->regs.GetRegisterInfo(reg_idx); // // // On some systems, we may not get unwind info for the program counter, // // but the return address register can be used to get that information. // if (reg_idx == currState->GetPCRegNum(Thread::Index)) // { // const RegLocation* returnAddrRegLocation = row->regs.GetRegisterInfo(currState->GetRARegNum(Thread::Index)); // if (regLocation == NULL) // { // // We have nothing to the program counter, so lets see if this // // thread state has a return address (link register) that can // // help us track down the previous PC // regLocation = returnAddrRegLocation; // } // else if (regLocation->type == RegLocation::unspecified) // { // // We did have a location that didn't specify a value for unwinding // // the PC, so if there is a info for the return return address // // register (link register) lets use that // if (returnAddrRegLocation) // regLocation = returnAddrRegLocation; // } // } // // if (regLocation) // { // mach_vm_address_t unwoundRegValue = INVALID_VMADDR; // switch (regLocation->type) // { // case RegLocation::undefined: // // Register is not available, mark it as invalid // unwindState->SetRegisterIsValid(reg_idx, Thread::Index, false); // return true; // // case RegLocation::unspecified: // // Nothing to do if it is the same // return true; // // case RegLocation::same: // // Nothing to do if it is the same // return true; // // case RegLocation::atFPPlusOffset: // case RegLocation::isFPPlusOffset: // { // uint64_t unwindAddress = currState->GetRegisterValue(row->cfa_register, Thread::GCC, INVALID_VMADDR, &get_reg_success); // // if (get_reg_success) // { // unwindAddress += row->cfa_offset + regLocation->location.offset; // // if (regLocation->type == RegLocation::isFPPlusOffset) // { // unwindState->SetRegisterValue(reg_idx, Thread::Index, unwindAddress); // return true; // } // else // { // kern_return_t err = mapped_memory_read_pointer(memCache, unwindAddress, &unwoundRegValue); // if (err != KERN_SUCCESS) // { // unwindState->SetRegisterIsValid(reg_idx, Thread::Index, false); // return false; // } // unwindState->SetRegisterValue(reg_idx, Thread::Index, unwoundRegValue); // return true; // } // } // else // { // unwindState->SetRegisterIsValid(reg_idx, Thread::Index, false); // } // return false; // } // break; // // case RegLocation::atDWARFExpression: // case RegLocation::isDWARFExpression: // { // bool swap = false; // DWARFExpressionBaton baton = { currState, memCache, swap }; // uint64_t expr_result = 0; // CSBinaryDataRef opcodes(regLocation->location.expr.opcodes, regLocation->location.expr.length, swap); // opcodes.SetPointerSize(currState->Is64Bit() ? 8 : 4); // const char * expr_err = CSDWARFExpression::Evaluate(DWARFExpressionReadMemoryDCScriptInterpreter::Type, // DWARFExpressionReadRegisterDCScriptInterpreter::Type, // &baton, // opcodes, // 0, // regLocation->location.expr.length, // NULL, // expr_result); // if (expr_err == NULL) // { // // SUCCESS! // if (regLocation->type == RegLocation::isDWARFExpression) // { // unwindState->SetRegisterValue(reg_idx, Thread::Index, expr_result); // return true; // } // else // { // kern_return_t err = mapped_memory_read_pointer(memCache, expr_result, &unwoundRegValue); // if (err != KERN_SUCCESS) // { // unwindState->SetRegisterIsValid(reg_idx, Thread::Index, false); // return false; // } // unwindState->SetRegisterValue(reg_idx, Thread::Index, unwoundRegValue); // return true; // } // } // else // { // // FAIL // unwindState->SetRegisterIsValid(reg_idx, Thread::Index, false); // } // return false; // } // break; // // // case RegLocation::inRegister: // // The value is in another register. // unwoundRegValue = currState->GetRegisterValue(regLocation->location.reg, Thread::GCC, 0, &get_reg_success); // if (get_reg_success) // { // unwindState->SetRegisterValue(reg_idx, Thread::Index, unwoundRegValue); // return true; // } // return false; // // default: // break; // } // } // // if (reg_idx == currState->GetSPRegNum(Thread::Index)) // { // uint64_t cfa = currState->GetRegisterValue(row->cfa_register, Thread::GCC, 0, &get_reg_success); // if (get_reg_success) // { // return unwindState->SetSP(cfa + row->cfa_offset); // } // else // { // unwindState->SetRegisterIsValid(reg_idx, Thread::Index, false); // return false; // } // } // // return false; //} void DWARFCallFrameInfo::Dump(Stream *s, Thread *thread) const { s->Indent(); s->Printf("DWARFCallFrameInfo for "); *s << m_objfile->GetFileSpec(); if (m_flags.IsSet(eFlagParsedIndex)) { s->Printf(" (CIE[%zu], FDE[%zu])\n", m_cie_map.size(), m_fde_map.size()); s->IndentMore(); cie_map_t::const_iterator cie_pos, cie_end = m_cie_map.end(); const ArchSpec *arch = &m_objfile->GetModule()->GetArchitecture(); for (cie_pos = m_cie_map.begin(); cie_pos != cie_end; ++ cie_pos) { if (cie_pos->second.get() == NULL) { s->Indent(); s->Printf("CIE{0x%8.8x} - unparsed\n", cie_pos->first); } else { cie_pos->second->Dump(s, thread, arch, m_reg_kind); } } fde_map_t::const_iterator fde_pos, fde_end = m_fde_map.end(); for (fde_pos = m_fde_map.begin(); fde_pos != fde_end; ++ fde_pos) { if (fde_pos->second.fde_sp.get() == NULL) { s->Indent(); s->Printf("FDE{0x%8.8x} - unparsed\n", fde_pos->second.fde_offset); } else { fde_pos->second.fde_sp->Dump(s, *this, thread); } } s->IndentLess(); } else { s->PutCString(" (not indexed yet)\n"); } } //uint32_t //DWARFCallFrameInfo::UnwindThreadState(const Thread* currState, mapped_memory_t *memCache, bool is_first_frame, Thread* unwindState) //{ // if (currState == NULL || unwindState == NULL) // return 0; // // *unwindState = *currState; // uint32_t numRegisterUnwound = 0; // uint64_t currPC = currState->GetPC(INVALID_VMADDR); // // if (currPC != INVALID_VMADDR) // { // // If this is not the first frame, we care about the previous instruction // // since it will be at the instruction following the instruction that // // made the function call. // uint64_t unwindPC = currPC; // if (unwindPC > 0 && !is_first_frame) // --unwindPC; // //#if defined(__i386__) || defined(__x86_64__) // // Only on i386 do we have __IMPORT segments that contain trampolines // if (!currState->Is64Bit() && ImportRangesContainsAddress(unwindPC)) // { // uint64_t curr_sp = currState->GetSP(INVALID_VMADDR); // mach_vm_address_t pc = INVALID_VMADDR; // unwindState->SetSP(curr_sp + 4); // kern_return_t err = mapped_memory_read_pointer(memCache, curr_sp, &pc); // if (err == KERN_SUCCESS) // { // unwindState->SetPC(pc); // return 2; // } // } //#endif // FDE *fde = FindFDE(unwindPC); // if (fde) // { // FindRowUserData rowUserData (currState, unwindPC); // ParseInstructions (currState, fde, FindRowForAddress, &rowUserData); // // const uint32_t numRegs = currState->NumRegisters(); // for (uint32_t regNum = 0; regNum < numRegs; regNum++) // { // if (UnwindRegisterAtIndex(regNum, currState, &rowUserData.state, memCache, unwindState)) // numRegisterUnwound++; // } // } // } // return numRegisterUnwound; //}