//===- QuantOps.cpp - Quantization Type and Ops Implementation --*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "QuantDialectBytecode.h" #include "TypeDetail.h" #include "mlir/Dialect/Quant/IR/Quant.h" #include "mlir/Dialect/Quant/IR/QuantTypes.h" #include "mlir/IR/BuiltinTypes.h" #include "mlir/IR/PatternMatch.h" #include "mlir/IR/TypeUtilities.h" #include "mlir/Dialect/Quant/IR/QuantOpsDialect.cpp.inc" namespace mlir { namespace quant { namespace { // Verify the integrity of per-axis quantization information, if present. // // - quantizedType // Any quantized type. Any quantized type with no per-axis quantization is // ignored. // // - containerType // Original input or result type of the operation using the provided quantized // type. Used to ensure that the quantized type appears within a tensor and // that the tensor is compatible with per-axis quantization information. // LogicalResult verifyPerAxisQuantization(Operation *op, QuantizedType quantizedType, Type containerType) { auto quantizedPerAxisType = dyn_cast(quantizedType); if (!quantizedPerAxisType) return success(); auto tensorType = dyn_cast(containerType); if (!tensorType) return op->emitError("scalar types may not use per-axis quantization"); if (!tensorType.hasRank()) return success(); int64_t quantizedDimension = quantizedPerAxisType.getQuantizedDimension(); if (quantizedDimension >= tensorType.getRank()) return op->emitError("quantized dimension must be less than tensor rank"); int64_t quantizedDimensionSize = tensorType.getDimSize(quantizedDimension); if (quantizedDimensionSize != ShapedType::kDynamic && quantizedDimensionSize != (int64_t)quantizedPerAxisType.getScales().size()) return op->emitError( "quantized dimension size does not match number of scales"); return success(); } // Common verification logic for 'quant.dcast' and 'quant.qcast' ops. // // - quantizedType // Quantized type used in the input ('quant.dcast') or result ('quant.qcast'), // whether as a primitive type or in a tensor. // // - floatType // Float type used in the input ('quant.qcast') or result ('quant.dcast'), // whether as a primitive type or in a tensor. // // - containerType // Type of original input or result. // LogicalResult verifyQuantizationOp(Operation *op, QuantizedType quantizedType, FloatType floatType, Type containerType) { if (quantizedType.getExpressedType() != floatType) return op->emitError( "expressed type in quantized type expected to match float type"); // Veriy integrity of per-axis quantization information, if present. return verifyPerAxisQuantization(op, quantizedType, containerType); } } // namespace //===----------------------------------------------------------------------===// // Dialect //===----------------------------------------------------------------------===// void QuantDialect::initialize() { addTypes(); addOperations< #define GET_OP_LIST #include "mlir/Dialect/Quant/IR/QuantOps.cpp.inc" >(); detail::addBytecodeInterface(this); } //===----------------------------------------------------------------------===// // DequantizeCastOp //===----------------------------------------------------------------------===// LogicalResult DequantizeCastOp::verify() { return verifyQuantizationOp(*this, getQuantizedType(), getFloatType(), getInput().getType()); } OpFoldResult DequantizeCastOp::fold(FoldAdaptor adaptor) { // Matches x -> quant.qcast -> quant.dcast -> y, replacing the quant.dcast op // with the value of x. Values x and y are guaranteed to be of the same type // in this pattern. auto srcQcastOp = getInput().getDefiningOp(); if (!srcQcastOp) return {}; assert(srcQcastOp.getInput().getType() == getType()); return srcQcastOp.getInput(); } FloatType DequantizeCastOp::getFloatType() { return cast(getElementTypeOrSelf(getResult().getType())); } QuantizedType DequantizeCastOp::getQuantizedType() { return cast(getElementTypeOrSelf(getInput().getType())); } //===----------------------------------------------------------------------===// // QuantizeCastOp //===----------------------------------------------------------------------===// LogicalResult QuantizeCastOp::verify() { return verifyQuantizationOp(*this, getQuantizedType(), getFloatType(), getInput().getType()); } OpFoldResult QuantizeCastOp::fold(FoldAdaptor adaptor) { // Matches x -> quant.dcast -> quant.qcast -> y, replacing the quant.qcast op // with the value of x if the casts invert each other. Contrary to the folding // pattern in quant.dcast (i.e., x -> quant.qcast -> quant.dcast -> y), values // x and y are not guaranteed to be of the same type here, as they may use // different quantization parameters. auto srcDcastOp = getInput().getDefiningOp(); if (!srcDcastOp || srcDcastOp.getInput().getType() != getType()) return {}; return srcDcastOp.getInput(); } FloatType QuantizeCastOp::getFloatType() { return cast(getElementTypeOrSelf(getInput().getType())); } QuantizedType QuantizeCastOp::getQuantizedType() { return cast(getElementTypeOrSelf(getResult().getType())); } //===----------------------------------------------------------------------===// // StorageCastOp //===----------------------------------------------------------------------===// LogicalResult StorageCastOp::verify() { auto quantizedType = getQuantizedType(); auto integerType = getIntegerType(); if (quantizedType.getStorageType() != integerType) return emitError( "storage type in quantized type expected to match integer type"); // Verify integrity of per-axis quantization information, if available. While // the quantization type may appear in the input or the result, their tensor // shapes are guaranteed to be identical at this point. return verifyPerAxisQuantization(*this, quantizedType, getInput().getType()); } OpFoldResult StorageCastOp::fold(FoldAdaptor adaptor) { // Matches x -> quant.scast -> quant.scast -> y, replacing the second // quant.scast with the value of x if the casts invert each other. auto srcScastOp = getInput().getDefiningOp(); if (!srcScastOp || srcScastOp.getInput().getType() != getType()) return {}; return srcScastOp.getInput(); } IntegerType StorageCastOp::getIntegerType() { auto inputScalarType = getElementTypeOrSelf(getInput().getType()); if (auto integerType = dyn_cast(inputScalarType)) return integerType; auto resultScalarType = getElementTypeOrSelf(getResult().getType()); return cast(resultScalarType); } QuantizedType StorageCastOp::getQuantizedType() { auto inputScalarType = getElementTypeOrSelf(getInput().getType()); if (auto quantizedType = dyn_cast(inputScalarType)) return quantizedType; auto resultScalarType = getElementTypeOrSelf(getResult().getType()); return cast(resultScalarType); } } // namespace quant } // namespace mlir #define GET_OP_CLASSES #include "mlir/Dialect/Quant/IR/QuantOps.cpp.inc"